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Abstract

Pay distributions fan out with experience. The leading explanations for this pattern are

that over time, either employers learn about worker productivity but productivity remains

fixed or workers’ productivities themselves evolve heterogeneously. We propose a dynamic

specification that nests both employer learning and dynamic productivity heterogeneity.

We estimate this model on a 20-year panel of pay and performance measures from a single,

large firm. The advantage of these data is that they provide us with repeat measures of

productivity, some of which have not yet been observed by the firm when it sets wages.

We use our estimates to investigate how learning and dynamic productivity heterogeneity

jointly contribute to the increase in pay dispersion with age. We find that both mechanisms

are important for understanding wage dynamics. The dispersion of pay increases with

experience primarily because productivity differences increase. Imperfect learning however

means that wages differ significantly from individual productivity all along the life-cycle

because firms continuously struggle to learn about a moving target in worker productivity.

Our estimates allow us to calculate the degree to which imperfect learning introduces a

wedge between the private and social incentives to invest in human capital. We find that

these disincentives exist throughout the life-cycle but increase rapidly after about 15 years

of experience. Thus, in contrast to the existing literature on employer learning, we find that

imperfect learning might have large effects on investments especially among older workers.
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1 Introduction

Observationally identical workers often earn vastly different wages, so much so that after

controlling for education, experience, and demographics more than two-thirds of the vari-

ation in wages remain unaccounted for. Furthermore, this unexplained variation in wages

increases with age. One explanation for this increase is that worker productivity evolves

heterogeneously over the life-cycle. An alternative explanation is that wages only gradually

diverge as employers learn to distinguish between skilled and unskilled workers. Employer

learning and dynamic productivity heterogeneity (hereafter EL and DPH, respectively) rep-

resent two of the leading hypotheses for why the unexplained variance in wages increases

with age. However, there is little to no evidence on how these forces interact in shaping

careers and wage profiles.

Understanding the role of EL and DPH is crucial for many important questions in

labor economics. For example, in models with incomplete information such as the learning

model, the agent bearing the cost of a human capital investment does not see the full benefit.

Models of employer learning thus can result in inefficient investment behavior. How large

are these inefficiencies? How are they distributed over the life-cycle? Answers to these

questions require estimates of how EL and DPH interact over the life-cycle.1

In this paper, we develop a new methodology exploiting information commonly collected

in personnel data sets to identify and estimate models that incorporate both EL and DPH.

In this, we go beyond the common approach in the literature of testing pure versions of

either EL or DPH, while assuming away any role for the other.2 In our model employers

constantly learn about a worker’s productivity, but this productivity varies over the life-

cycle. We present and estimate a tractable specification to determine how EL and DPH

interact in wage dynamics and how much they contribute to pay dispersion over the life-

cycle.3 Based on these estimates, we can quantitatively assess how the disincentive to invest

due to incomplete information varies over the life-cycle.

Distinguishing between EL and DPH using traditional data sources is intrinsically dif-

ficult. Typically, such data contain only wages, but not any independent measures of pro-

ductivity. This forces researchers who want to estimate productivity dynamics to assume

that employers are perfectly informed about workers’ skills so wages equal productivity.4

1Such estimates are also crucial for many other aspects of labor economics. For example, they inform on
the sources and size of earnings risk over the life-cycle and are important for understanding the incentives
to engage in signaling through education.

2Hereafter, we refer to the “pure EL” model to mean that employers learn about worker productivity but
productivity is itself fixed, while in the “pure DPH” model productivity evolves heterogeneously throughout
the life-cycle but firms are perfectly informed about worker productivity.

3The literature on earnings dispersion is too large to review here; see the Neal and Rosen (2000) survey
for a useful starting point.

4A rich literature (eg. Abowd and Card (1989), Baker (1997), Guvenen (2007), Hause (1980), and
MaCurdy (1982), among many others) related to our work analyzes the covariance structure of wages, often
within the context of the human capital framework based on Becker (1964), Mincer (1958), and Ben-Porath
(1967). Implicit or explicit is an assumption that wages equal productivity.
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Farber and Gibbons (1996) broke new ground in exploiting an independent measure of

productivity (the AFQT, an aptitude test score) that is arguably not observed by firms to

test for EL. Their finding that AFQT increasingly correlates with wages over the life-cycle

suggests a substantial role for employer learning.5 An important drawback of this literature

is its assumption that researchers are better informed than employers about worker skills.

Employers are assumed not to collect the AFQT (or equivalent measures) even though the

information in these measures is valuable to them. An equally important drawback is that

the AFQT was collected only once at the outset of workers’ careers. Consequently, the EL

models analyzed in the literature cannot allow for individual heterogeneity in productivity

dynamics over the life-cycle. Rather the scope of these studies is limited to understanding

how employers learn about productivity differences that exist at young ages.

The key innovation of our paper is to use a panel of repeated performance measures

and wages to relax the restrictive assumptions of both the pure EL and DPH models. We

use a 20-year unbalanced panel data set of all managerial employees in one firm, previously

analyzed in Baker, Gibbs and Holmstrom (1994a and 1994b, BGHa and BGHb hereafter).6

The panel structure allows us to observe performance ratings that were collected prior to,

contemporaneous to, and after the current period. The latter provide us with information

about worker productivity that the firm was not able to exploit when setting wages. We

can thus dispense with the ad-hoc assumption on the information available to employers

that was previously required in this literature. Further, the repeat performance ratings

obtained at various points over the life-cycle allow us to estimate dynamic specifications of

productivity and learning that go beyond those currently estimated in the literature.

We show that the correlations of pay with performance, measured at various lags and

leads, are particularly informative for distinguishing between EL and DPH. For example,

the pure EL model predicts that pay correlates more with past than with future performance

measures because firms rely on past, but not future, performance measures to set current

pay. In contrast, an implication of the pure DPH model is that pay correlates similarly

with past and future performance evaluations.

We find evidence for employer learning in that we observe that wages are indeed more

highly correlated with past rather than future performance ratings. However, we observe

this pattern even among experienced workers. In contrast, the pure EL model implies that

firms become increasingly well informed about more experienced workers and therefore

5The AFQT is a composite score derived from a battery of tests administered to the respondents of the
NLSY79, prior to their labor market entry. Farber and Gibbons (1996), Altonji and Pierret (2001), Lange
(2007), Arcidiacono, Bayer, and Hizmo (2010), Habermalz (2011), among others, exploit this measure to
study employer learning.

6These landmark studies provided early empirical evidence on the internal organization and pay dynamics
of the firm. Their findings have inspired the well known contributions by Gibbons and Waldman (1999
and 2006) who reconcile most of the BGH findings by combining simple models of job (and later task)
assignment, human-capital acquisition and learning. In addition, Gibbs (1995) describes the empirical
relationship between pay, promotions and performance and DeVaro and Waldman (2012) use the data to
test the Waldman (1984) promotion-as-signal hypothesis.
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update less on new signals. Our full model can rationalize this continued learning by

allowing for heterogeneity in the evolution of worker productivity that is difficult to predict

by firms. Consequently, firms continue to update their expectations about the worker’s

productivity even for experienced workers: they try to hit a moving target.

These findings have important implications for the questions raised above. We find that

the majority of the observed growth in the dispersion of wage residuals reflects heterogeneous

innovations in productivity. However, wages and productivity are not perfectly aligned as

firms make substantial errors in wage setting, even at high levels of experience. We also

find that individuals’ incentives to invest in their human capital are affected by imperfect

information through their careers.7 This effect looms larger for older workers since they

have less time to capture the social returns of their investments. In prior work (Lange 2007),

one of us argued that firms learn rapidly about differences in worker productivity present

at the beginning of workers’ careers, suggesting that younger workers are most affected by

imperfect information. Our finding instead suggests the opposite: the incentives to invest

in skills are more severely misaligned for older workers , rather than younger, workers.

This reinterpretation of the traditional employer learning model represents a significant

contribution to our understanding of workers’ careers and pay evolution over the life-cycle.

The remainder of this paper is structured as follows. Section 2 introduces our main

model, shows how this model nests the pure EL and DPH models, and discusses the identi-

fication of these two models. Section 3 describes the data and estimation method. Section

4 reports the results and evaluates the fit of the model. In Section 5, we discuss what these

estimates imply for how EL and DPH contribute to wage dynamics over the life-cycle and

we show how imperfect learning affects the incentives to invest into human capital. Section

6 discusses alternative assumptions on how to interpret performance ratings, the effect of

selective attrition, and how relaxing the spot market and other assumptions might affect

our results.8 A more general formulation of the model, and a formal identification argument

of the two basic constituent models are relegated to the appendices.

7A theoretical literature (see Chang and Wang 1996, Katz and Ziderman 1990 and Waldman 1990) posits
that when firms learn asymmetrically about worker ability, workers could underinvest in general skills. We
make a similar point for symmetric learning models. This is novel, likely because the literature has so far
only estimate learning models under the assumption of constant productivity.

8In Section 6, we also discuss pay for performance as a competing explanation. As we explain there,
a direct link of pay with contemporaneous performance is not consistent with the data. On the other
hand, deferred incentive schemes, such as tournament models of promotions( (Lazear and Rosen 1981) or
performance based raises, are difficult to identify separately from employer learning. Fitting a richer model
of productivity evolution, employer learning, and job assignment in the spirit of Gibbons and Waldman
(1999, 2006) would be of obvious interest here. We have abstracted away from such an exercise to retain
tractability. See Smeets, Waldman and Warzynski (2013) for a first step which qualititively assesses a model
of productivity, employer learning, and one dimension of job assignment (the span of control) in personnel
data on Danish employees of a large multinational firm. Pastorino (2013) estimates a model with learning,
productivity, and task assignment to explore the role that experimentation by placing workers in different
tasks plays in the learning process.
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2 A Model of Learning and Productivity

EL and DPH models represent distinct points of view about how wages evolve over the

life-cycle. We provide a parsimonious formulation that nests both. To fix ideas, we first

develop this nested specification by assuming that we have access to ideal data: a panel con-

taining pay without measurement error and a continuously distributed objective correlate

of productivity. We explain how we deal with the realities of the data in section 3.

2.1 The Nested Model

Throughout, we assume that labor markets are spot markets and that information is sym-

metric across employers.9 This implies that workers are paid their expected product each

period. Firms know the structure of the economy and update expectations in a Bayesian

manner. These assumptions keep the model tractable. They are also standard in the pre-

vious literatures on employer learning and productivity evolution. By invoking these same

assumptions we ensure that our results can be compared to these literatures. In Section 6

we discuss informally the implications of relaxing some of these assumptions.

We next impose a specific productivity process and information structure on our model.

Appendix I shows how to relax these specific assumptions.

Productivity Evolution

A scalar Q̃it summarizes worker productivity which evolves with observed characteristics

xi and experience t according to Q̃it = Q (xi, t) ∗Qit. Here Q (xi, t) = E
[
Q̃it|xi, t

]
captures

systematic variation in productivity over the life-cycle and is necessary to explain the strong

regularities in log wages with experience and schooling that characterize all labor market

data. Qit is the idiosyncratic, time-varying component of individual productivity. Denote

q̃it = log(Q̃it) = χit + qit, where χit is common to individuals with the same observable

characteristics and qit = log(Qit) represents the idiosyncratic component of productivity.

The difference equation (1) provides a simple representation of how qit evolves with

experience:

qit = qit−1 + κi + εrit (1)

We assume κi ∼ N
(
0, σ2κ

)
and εrit ∼ N

(
0, σ2r

)
and that the εrit are uncorrelated over time

and with κi. We initialize this difference equation in period 0 with a draw of qi0 from a

normal distribution N(0, σ2q ).
10 This draw is independent of κi. By construction, qit is mean

zero.

9A large literature deviates from the assumptions of spot markets and symmetric information. For
example, Gibbons and Katz (1991), Kahn (2013), Schönberg (2007) and DeVaro and Waldman (2012) provide
evidence, in a variety of settings, that employers learn asymmetrically. Further BGH (1994b), Beaudry and
DiNardo (1991), Kahn (2010), and Oreopoulos et al. (2012) show that pay is in part dependent on past
labor market conditions. We are enormously sympathetic to this literature, especially since one of us has
contributed to it. However, it would be intractable to include features of these models in our paper.

10We adopt the convention that period 0 is a period prior to the first period the individual spends in the
labor market.
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Equation (1) allows for three sources of heterogeneity in the evolution of log productivity

qit. Individual differences in qi0 reflect differences in initial ability. Differences in the

drift parameter κi allow for persistent differences in the intensity with which individuals

accumulate human capital over the life-cycle.11 εrit captures unpredictable innovations in

individual productivity that can stem from various sources, such as task evolution, health

shocks, or technological change rendering skills obsolete. These innovations are persistent

because we assume that εrit follows a random walk. And, since εrit are i.i.d, the variation

in these innovations does not decline with experience. The productivity process (1) implies

that productivity continues to diverge even among experienced workers.

Information Structure

We use three different types of signals to model how employers learn. At the onset,

firms receive an initial signal zi0. In each subsequent period, employers observe two signals:

{pit, zit}Tt=1. The signals zi0 and {zit}Tt=1 are not observed in the data available to researchers.

The only signal that is (partially) contained in our data is pit. The signal structure is:

pit =qit + εpit

zi0 =qi0 + εi0 (2)

zit =qit + εzit

where (εi0, ε
p
it, ε

z
it) are independently distributed, mean zero, normal random variables with

variances (σ20, σ
2
p, σ

2
z). The normality assumptions allow us to analyze the learning process

using the tools of Kalman filtering and ensure great parsimony for the model.12

In Appendix I, we show how one can use linear state space methods to derive second

moments of wages and performance in a more general class of models. Applying these

methods to our specific case, we obtain the implied second moment matrices for wages and

performance ratings which depend only on 6 parameters:
(
σ2q , σ

2
r , σ

2
κ, σ

2
0, σ

2
p, σ

2
z

)
. We will

later estimate these parameters by matching empirical moments in the data. The parsimony

of the model makes it fairly clear how the moments and parameters map onto each other.

At the same time the model is sufficiently complex to nest EL and DPH. The restriction

σ2κ = σ2r = 0 eliminates any heterogeneous dynamics in productivity and results in the

pure EL model. By contrast, the restriction σ20 = σ2z = 0 removes any noise in the signals

observed by the firm (but not the employer) and thus delivers the pure DPH model.

11Persistent differences in intensity would arise, for example, if individuals differ in either their preferences
or ability to invest (Becker 1964, Ben-Porath 1967).

12The assumption that cov (εpit, ε
z
it) = 0 is without loss of generality since the information in correlated

normal signals is identical to the information contained in orthogonalized signals. The correlations between
pit and wages implied by a model with either correlated or orthogonal signals are therefore identical.
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2.2 Implications and Identification

Our goal is to separately identify how productivity evolves from how employers’ expectations

about productivity, which are reflected in wages, evolve. Clearly, this requires more than

just observing wages. One approach to separate learning from productivity is to impose

strong functional form assumptions on the productivity process. The alternative approach,

pursued in this paper, is to obtain additional information about the underlying productivity

process. We rely on a productivity correlate observed at multiple times over a worker’s life-

cycle to provide this additional information.

In the remainder of this section, we develop intuition about the identification of the

model by contrasting the pure EL model with the pure DPH model. In the pure EL model,

information is imperfect and productivity is constant over the life-cycle; in the pure DPH

model, firms have perfect information and productivity evolves stochastically. We discuss

each model in isolation not because we believe that either describes the world well; our

empirical analysis below indeed shows that combining heterogeneous productivity dynamics

with employer learning substantially improves the fit of the data. Rather, we discuss the

two pure models in detail to clearly contrast the empirical implications of both forces.

Appendix II contains a more formal discussion of how to identify the parameters in the

model using the second moments of wages and performance ratings.

The Pure Employer Learning Model

It has long been appreciated that wage changes in pure EL models result only from new

information and are therefore serially uncorrelated. It is also well known that the variance

in pay increases with experience at a decreasing rate. As firms learn to distinguish among

workers, pay becomes more and more dispersed. However, eventually learning and the

increase in the pay variance slows down.

Central to our analysis and novel to the literature are implications of the pure EL

model for how wages covary with performance measures at various leads and lags. Given

the restrictions of the pure EL model, σ2κ = σ2r = 0, wages are given by:

wit = E
[
qi|It

]
= χt + (1−Kt−1) ∗ E [qi|zi0] +Kt−1

1

t− 1

t−1∑
j=1

φij (3)

where φit = (1− φ) pit + φzit (4)

Kt =
tσ2q

tσ2q + σ2φ
(5)

Recall, χt captures the variation in expected log productivity with age that is common

across individuals.13 The remaining parts of equation (3) show how wages depend on the

13This variation is due to changes in average productivity with experience itself and to changes in the
variance of the expectation error in productivity, which enter due to the non-linearity of the logarithmic
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signals observed by the firm.14

From equations (3)-(5), it is easy to derive the covariances between pay and the perfor-

mance measures observed in the data:

cov(wit, piτ ) =

{
Kt−1(σ

2
q + 1−φ

t−1 σ
2
p) τ < t

Kt−1σ
2
q τ ≥ t

}
(6)

Inspecting equation (6) we observe that Kt−1σ
2
q appears in the covariance between wages

and both leading (τ ≥ t) and lagging (τ < t) performance measures. Kt−1σ
2
q reflects the

joint dependence of both performance measures and wages on productivity qi. It increases

in experience t since the expectation error in wages declines with experience making wages

and productivity more closely aligned. The additional term in the covariance between wages

and lagged performance captures the fact that past performance measures are used to form

expectations and thus to set wages. Therefore the signal noise in past performance measures

directly enters wages. This raises the covariance between wages and lagged performance

measures.

Reflecting this intuition, equation (6) generates two additional implications of the pure

EL model for the covariances of wages and performance measures. First, the cov(wit, piτ )

for τ < t exceeds that for τ ≥ t; the cov(wit, piτ ) will be a step function of τ with a

negative discontinuity at τ = t. This is because current pay incorporates past, but not

future, realizations of pit. The second prediction is that the size of the step decreases in

t. Differencing the two expressions in equation (6) we see that the step size is equal to

Kt−1
1−φ
t−1 σ

2
p, which decreases with experience t.

Figure 1, panel A illustrates both predictions by plotting a simulated set of cov(wit, piτ )

for τ ∈ (t− 6, t+ 6) for a younger (experience 7) and an older worker (experience 20).15

Figure 1: Simulated Correlations of Pay and Performance

Intuitively, firms incorporate past performance when setting current pay, but cannot

incorporate performance measures that have not yet been realized. This results in higher

correlations of pay with past performance measures than with future performance mea-

sures, or a “step” in the cov(wit, piτ ). This distinction between the past and the future is

fundamental to learning models because it separates observed and unobserved information.

The size of this step provides information about the amount of learning that takes place at

function. A convenient feature of the normal learning model is that the variance of the prediction error
does not depend on the observed signals and is instead common across all individuals with the same level
of experience.

14In each period, we combine the two signals zit and pit into a single scalar φit that represents a sufficient
statistic for the information obtained in period t. The weight φit depends on how much variance there is
in both signals respectively. The exact expressions for φ and σ2

φ, the variance of the scalar signal φit are
known, but not of particular interest at this point.

15We use our eventual estimates of
(
σ2
q , σ

2
0 , σ

2
p, σ

2
z

)
from the pure EL model (estimated in section 4 and

reported in table 4, column 1) to simulate data and generate these covariances.
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different experience levels. It is therefore very influential in identifying the role of learning

over the life-cycle.

The step is smaller for older workers because the correlation of pay with future per-

formance measures is higher for this group, while that with past performance measures is

unchanged. Intuitively, as workers age, firm expectations become more precise so wages

and productivity are more highly correlated. This force works to increase the correlations

of pay with past and future performance measures. However, for older workers firms rely on

many more signals than for younger workers and they place less weight on any given signal

when setting pay. Consequently, among older workers there is an offsetting tendency that

lowers the correlations between pay and past (but not future) performance measures. On

balance, the correlations of pay with future performance measures increase, the correlations

with past performance measures are constant, and the difference between the correlations

with past and future performance measures (the “step”) decline in experience.

For future reference, we restate the primary implications of the pure EL model that are

relevant for distinguishing it from a pure DPH model.

• (EL 1) Wage changes are serially uncorrelated.

• (EL 2) The variance in pay increases with experience at a decreasing rate.

• (EL 3) The covariance of pay with past performance is larger than that with future

performance: the cov(wit, piτ ) is a step function with a discontinuity at t = τ .

• (EL 4) The size of the step in (EL 3) declines with experience.

The Pure Dynamic Productivity Heterogeneity Model

We will now discuss the pure DPH model obtained by setting σ20 = σ2z = 0. With these

restrictions, log wages and the performance measures observable to the researcher are:16

wit = qit

pit = qit + εpit (7)

In contrast to the pure EL model, wages do not typically follow a random walk. Instead,

wages and productivity have the same stochastic dynamic properties. Our specification

(equation (1)), for instance, implies that the covariance in wage growth at different expe-

rience levels is σ2κ, the variance of the heterogeneous trend in productivity.17 Equation (1)

also implies that the variance in pay rises in experience at an increasing rate.

16Under perfect information, employers have no incentive to collect the measures pit. Thus, the observation
that firms collect pit can be taken as evidence against the pure productivity model.

17MaCurdy (1982), Baker (1997), Abowd and Card (1989), Guvenen (2007) and many others use auto-
correlation in wage growth to test for permanent heterogeneity in productivity growth. The findings in this
literature on this question vary.
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These two implications (serial correlation in pay growth and that the variance of log

pay increases convexly with experience) are somewhat specific to the production process

we imposed. If σ2κ = 0, then the variance of log pay would increase at a constant rate and

log pay would follow a random walk. A more fundamental distinction between the pure

DPH model and the pure EL model can be drawn by considering the covariance of pay with

different leads and lags of the performance signals. Since the signal noise εpit is orthogonal

to qit, we have the following expression for the covariance between performance measures

at τ and pay at t:

cov(wit, piτ ) = cov(qit, qiτ ) (8)

It follows immediately from equation (8) that at t = τ , cov (wit, pit) increases in the

variance of qit and consequently with the variance of wit. Thus, as long as the variance of

pay increases (as is generally observed over the life-cycle), the covariance of pay with per-

formance measures should also increase. Furthermore, equation (8) implies a fundamental

smoothness in the cov(wit, piτ ) at t = τ ; there will be no discontinuity. This is because t and

τ are interchangeable in equation (8). Thus, we have that cov(wit, piτ ) = cov (wiτ , pit).
18

Additional implications follow from combining (8) with our specific productivity process

(1) . In particular, the cov (wit, pit+k) increases in k. To see this, assume for the moment

that k > 0. The covariance between pi,t+k and wit is var (qit)+k ∗cov (qit, κi) . Since κi also

enters into qit, we obtain that cov (wit, pit+k) increases linearly in k. A similar argument

applies for k < 0.

We illustrate these implications using simulated data in Panel B of figure 1.19 Notice

the covariances are increasing in experience and in k. In a full information world the

error in past performance measures is irrelevant for wage setting. In contrast, if there is

incomplete information, then the firm will not be able to separate the error in the past

performance measure from the signal. It will therefore set pay partially based on this error.

It cannot do this for the performance measures that will be observed in the near future.

This generates the discontinuity at t = τ in the pure learning model that is not present in

the pure productivity model.

We now summarize the primary implications of the pure DPH model that allow distin-

guishing it from a pure EL model.

• (DPH 1) Wage changes are serially correlated.

• (DPH 2) The variance in pay increases in experience at an increasing rate.

• (DPH 3) The covariance of pay with performance,cov (wit, piτ ) , is increasing in expe-

rience, t, and in τ .

18Sufficient conditions for a lack of a discontinuity in the full information model are: pit is correlated
with qit, wages equal expected productivity, and wages and current performance measures are related only
through the correlation between productivity and expected productivity.

19To simulate the data for these covariances, we use estimates of
(
σ2
q , σ

2
r , σ

2
κ, σ

2
p

)
from the pure DPH model

reported in table 4, column 2.

11



• (DPH 4) There is no discontinuity in the correlation of wages with past and future

performance measures at t = τ .

The above discussion illustrates the basic predictions that allow us to distinguish between

EL and DPH using our data. In addition to testing each model in its pure form, we can

use the nested model to study how employer learning and productivity evolution interact

in generating observed dynamics of wages.

3 Data and Measurement Issues

In this section, we describe the data and we show how we adapt the above model in the

face of the existing measurement issues. We summarize the key moments in the data and

explain how we use these to estimate our model via general method of moments (GMM).

3.1 General description

This paper analyzes data first used by BGHa and BGHb in their canonical studies of the

internal organization of the firm. The data consist of personnel records for all managerial

employees of a medium-sized, US-based firm in the service sector from 1969-1988. We have

annual pay and performance measures, as well as some demographics and a constructed

measure of job level (see BGHa for more detail). The original sample contains 16,133 em-

ployees. Of these, we restrict attention to the 9,626 employees with non-missing education

who can be observed with at least one wage or performance measure between the ages of

25 and 54 and at least one more wage or performance measure. We adopt the convention

that age 25 is the first year of experience.20

Table 1 reports summary statistics. The majority of managers are white males with at

least a college degree. Average annual salary is $54,000 in 1988 dollars and measures base

pay.21

Table 1: Summary Statistics

Models of EL or DPH are about deviations of pay and performance from their average

profiles. We thus residualize both log pay and performance on observable characteristics.22

20Age 25 might be considered slightly old to begin the processes of employer learning and post-school skill
accumulation for most education groups. However, our sample consists of workers who have already been
promoted to the level of manager. Since we don’t observe them before they enter this sample, we start at
the earliest age which still yields a decent sample size. As a robustness check we have estimated the model
separately for each education category thus effectively using a potential experience measure. The results are
reported below.

21We follow the same restrictions on salary as those in BGH. We have information on bonus pay for some
years (1981-1988) but do not include it in the analysis to maintain consistency in our data across years. In
these years, 25% of workers in our sample receive a bonus and, conditional on receiving a bonus, the amount
is on average 12% of base salary. We have separately estimated the model with the bonus and the salary
data using the 1981-1988 period only. The results are consistent with those presented here but less precise.

22Specifically, we residualize on dummies for age, race, gender and year, all interacted with education
group (high school, some college, exactly college, advanced degree). In order to allow for different career
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Since our data come from one firm only, the variation in pay will be lower than in the

population.Appendix figure A1 compares the life-cycle variation in wage residuals in our

data with the variation in the Current Population Survey over the same time period.23 The

average residual wage variance in the CPS is about 2.5 times that in BGH (0.23 compared to

0.09), while the experience profile is a bit steeper in BGH. This is important to be mindful

of in interpreting our results.

3.2 Subjective Performance Ratings (and other measurement issues)

So far we have treated the observed performance measures pit as noisy signals of productiv-

ity pit = qit + εpit where εpit is normally distributed white noise. We will use the short-hand

“objective performance measures” to describe performance correlates that have this struc-

ture. Unfortunately, the subjective, managerial performance assessments at our disposal do

not conform with these assumptions. An obvious difference is that the ratings are ordinal

rather than continuous random variables. They range from 1 to 4, with higher ratings

reflecting better performance. From table 1, we see that the average rating is a little over

a 3 and the distribution is top heavy, with more than 75% of workers receiving one of the

top two ratings.24

It is straightforward to accommodate the discrete nature of the performance ratings. For

this purpose denote the observed performance rating as p̃it. We assume that this discrete

random variable is generated by a latent signal on individual productivity, pit, which satisfies

the assumptions made in the previous section. From the joint distribution of compensation

wit and observed discrete measure p̃iτ for any t and τ we can identify the correlation between

piτ with wit and with piτ 6=t using maximum likelihood methods described in more detail

below.

Besides accounting for the discrete nature of these ratings, we also need to address the

fact that our performance ratings represent subjective assessments. If we maintain the

assumptions embedded in eqs. (2) and also assume that workers are paid their expected

marginal product, then we have that E [pit|t] = E [qit|t] = E [wit|t] so that the life-cycle of

average ratings and wages should be equal to each other. This restriction is clearly rejected

by the data. Figure 2 plots log pay and performance residuals by age. The solid line

trajectories and secular trends across race and gender, we also interact race and gender with a linear time
trend and a quadratic in age.

23To remain comparable with our data, we use survey years 1970-1989 and restrict attention to annual
earnings (in the previous calendar year) of full-time, full-year, private sector workers age 26-55 with at least
a high school degree. We reweight the CPS sample to match the age-race-gender-education distribution of
the BGH data. We also drop those who earned less than $2600 over the year since this would be less than
the federal minimum wage over this time period. We then residualize log wage and salary income on the
same control variables listed above.

24We inverted and recoded the original measures, which ranged from 1 to 5, combining the worst two
ratings since almost nobody receives the worst. Similar distributions of performance ratings are found in
Medoff and Abraham (1980 and 1981), Murphy (1991), and Frederiksen, Lange, and Kriechel (2013) in their
studies of performance ratings across various industries and firms.

13



shows that earnings are rising with age, but at a decreasing rate, reflecting typical life-cycle

patterns. The dashed line reveals, somewhat surprisingly, that average performance ratings

decline with age in our data.

Figure 2: Log Wages and Performance by Age

In pioneering work, Medoff and Abraham (1980, 1981) found a similar pattern in a

different set of firms: the life-cycle profiles of compensation and subjective performance

measures often deviate from each other. Frederiksen, Lange, and Kriechel (2013) examine

these life-cycle profiles in some detail in data from various industries, countries, and time-

periods. While compensation invariably has a familiar Mincerian shape, subjective ratings

deviate substantially. In some firms they increase with experience, in others they decrease

and sometimes they are even non-monotone in experience. The observation that the life-

cycle profiles of wages and performance ratings deviate from each other makes it impossible

to both assume that wages equal expected productivity and that subjective ratings are

unbiased signals (in the sense that E[pit] = qit).

Findings from studies that have access to objective ratings (e.g. Waldman and Avolio

1986) suggest that productivity tends to have the shape familiar from Mincer earnings

regressions. And, those studies that have data on both objective and subjective ratings (see

Jacob and Lefgren 2008 and Bommer et al. 1995) find high correlations between both.

We thus face a situation where subjective ratings display different life-cycle profiles

than compensation and objective performance correlates. In addition, the life-cycle pro-

files of subjective ratings vary significantly across firms. Finally, we know (Gibbs 1995,

Frederiksen, Lange, and Kriechel 2013) that subjective ratings within narrowly defined de-

mographic groups correlate with career outcomes such as compensation, promotions, and

retention. Subjective performance ratings therefore contain information relevant for work-

ers’ compensation and career evolution, despite the differences in the life-cycle profiles of

wages and performance ratings.

These diverse empirical findings can be reconciled by recognizing that the scales and

frames of reference for the subjective ratings are likely to change across different stages of

careers and with demographic characteristics. However, within demographics and career

stages, subjective ratings do contain information about the relative performance of workers

(see Gibbons and Waldman 1999). By interpreting the rankings as relative within narrowly

defined experience, education, and demographic groups, we remove any information con-

tained in variation across these narrowly defined peer groups. However, continue to exploit

the variation in performance ratings within groups defined by demographics and possibly

other characteristics. This approach can accommodate the variation in the ratings across

experience and other observables that define the peer groups. And, it also accommodates

the correlation of subjective ratings with compensation and other outcomes within peer

groups.
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In our analysis, we therefore follow the common practice in the literature to treat the

performance measures as relative. That is, we interpret observed performance, p̃it, as arising

from a latent signal on individual productivity, pit, according to the mapping in equation

(9)

p̃it =
K−1∑
k=1

1(pit ≥ ckt) (9)

A worker is assigned the ranking p̃it = k if his or her latent productivity signals falls between

the two thresholds, ck−1t and ckt, where we allow these thresholds to differ across age groups.

In practice, we generate age-specific performance deciles on the residualized performance

measures, thus incorporating the assumption that ratings are relative to individuals of

the same age.25 The structure imposed in section 2 implies that the latent signal, pit, is

normally distributed. We can therefore estimate correlations of the latent index pit with

other normally distributed variables (such as log wage residuals and lagged performance)

using maximum likelihood methods.26 As usual for categorical variables, we cannot identify

the variance of pit. For this reason, we focus from now on on correlations, rather than

the covariances discussed in section 2.2. It is straightforward to show that identification

arguments in section 2.2 also apply to correlations.

As we estimated the model, we found that the performance ratings were very highly

correlated across short time horizons. We believe this pattern arises from temporary stick-

iness in performance evaluations and does not reflect true productivity evolution. Such

persistence could occur, for example, if workers are temporarily matched with the same

manager for several periods who may then give similar ratings. Or, managers may be re-

luctant to give ratings that deviate too far from past performance, if they anticipate the

unpleasantness of dealing with worker complaints or needing to provide extra justification.

We model this effect by assuming that the noise in the performance measures, εpit, evolve

according to equation (10) :

εpit+1 = ρεpit + uit+1 (10)

where the initial noise is εpi1 = 0 and uit ∼ N
(
0, σ2u

)
. The parameter ρ governs the degree

of persistence in manager ratings and will be estimated. Other than this, we assume that

signals reflect new information, i.e., the signal errors (εi0, ε
z
it, uit) are uncorrelated across

time.27

25We have experimented with different approaches in generating the reference group for a worker. Besides
age, we have allowed performance to be relative to other workers in their entry cohort and also relative to
the job level at worker attained. Our results are qualitatively and quantitatively robust to redefining the
comparison groups in this manner.

26Whenever we refer to “deciles”, we actually mean that the support is divided into 9 parts. This was
made necessary by the specific requirements of the polychoric estimation command in Stata that we rely on.

27In order to generate auto-correlation in performance measures we could also assume that the innovation
in productivity follows an AR1. However, this assumption would force the nested model to be very similar
to the full information DPH model. To see this note that pit contains noise εpit. Thus, the AR-1 process in
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Finally, we also adapt the model to allow for measurement error in wages:

Wi,t = W ∗i,tΩi,t (11)

where Wit is the observed wage, W ∗it is the wage measured without error and Ωit represents

the measurement error. Taking logs we get

wit = w∗it + ωit (12)

We assume that ωit is classical measurement error with ωit ∼ N
(
0, σ2ω

)
. In practice, we

residualize log wage on the same set of variables used to residualize the performance mea-

sures.

Thus, with the addition of measurement error in wages and auto-correlation in the

signal noise, we now have 8 parameters governing our model:
(
σ2q , σ

2
r , σ

2
κ, σ

2
0, σ

2
u, ρ, σ

2
z , σ

2
ω

)
.

We next describe the empirical moments we use to estimate these parameters.28

3.3 Moments for estimation

Our model generates implications about the second moments of wages and performance

across different experience levels. Here we present the empirical analogs which we use to

estimate our model. In principle, we could match correlations in wages and performance

ratings across all 30 age levels, 25-54. Instead, we simplify the estimation and exposition

by constructing a set of 68 moments that we think are particularly informative for distin-

guishing learning and productivity models. These moments are shown in figures 3a and 3b

and in table 2.2930

observed performance necessarily exhibits less persistence than the AR-1 process in true productivity. In
order to generate the auto-correlations between pit and pit−1 (on the order of 0.6), we would need the signal
noise in εpit to be very small. If however εpit is very precise, then we are back to the full information DPH
model, which we show to be rejected by various empirical findings described below.

28Our key identification arguments regarding the “step” in the correlations of pay with lags and leads
of performance carry through with the introduction of ρ and σ2

ω. First, classical measurement error in
wages will not affect the covariances of wages with other performance measures or with wages in other
periods. Second, for ρ, recall that in the pure EL model, pit = qi + εpit. Allowing for ρ 6= 0, we have:
pit = qi + ρεpit−1 + uit = qi + εpit−1 + (ρ− 1)εpit−1 + uit (adding and subtracting εpit−1). Thus cov(wit, pit) =
cov(wit, qi + εpit−1 + (ρ− 1)εpit−1 + uit) = cov(wit, pit−1) + (ρ− 1)cov(wit, ε

p
it−1), since uitis iid noise. Since

(ρ− 1) < 0 and cov(wit, ε
p
it−1) > 0, we have that cov(wit, pit) < cov(wit, pit−1). Therefore we will still have

a “step” at t = τ when ρ > 0, though it may be smaller. Furthermore, in the pure EL model, cov(wit, ε
p
it−1)

will be declining in t; as workers gain experience, firms place less weight on any given signal. Thus the step
size will still be declining in t.

29In constructing these moments, we take average correlations and variances across the specified set of
experience years weighted by the number of individuals for which we observe that moment.

30We have investigated to what extend these patterns are similar if we slice the data by education group.
Regardless how we cut the data, the second moments of wages and performance measures are consistently
similar to those reported for the aggregate sample, with some minor deviations. The one major exception is
that the asymmetry in time for the correlations between pay and performance among the less educated is less
pronounced especially for younger workers. Given the evidence in Arcidiacono et al. (2010) on differential
learning by education, we find this deviation from the observed patterns for less educated workers of interest
and hope it will attract further research. Versions of figure 2 estimated on subgroups in our data are available
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Figures 3a and 3b: Moments and 95% CI

Table 2: Empirical Moments

Panel A in figure 3a shows the variance in log wage residuals for six 5-year experience

groups ranging from 1-5 to 26-30 years. The variance in pay around the age profile increases

almost linearly with age, slowing only slightly after about age 50. Understanding this

variation and its increase over the life-cycle is the primary task of this paper. Note both the

pure EL model and the pure DPH model predict increasing variances (EL2 and DPH2), but

the former predicts a concave pattern, consistent with this figure, while the latter predicts

a convex pattern.

Panels B and C in figure 3a show auto-correlations in performance and pay residuals,

respectively, for up to 6 lags and for two experience groups: experience 1-15 with solid

dots and 16-30 with hollow dots. For both pay and performance, the more experienced

group exhibits higher auto-correlations which decline across lags. As discussed above, we

allow for an auto-regressive component in the signal noise to match the lag-structure of the

performance auto-correlations.

Panel D in figure 3a shows correlations in pay changes for up to 9 lags and for the same

two experience groups. According to the EL model pay changes are serially uncorrelated

(EL1) while the DPH model allows for positive correlations in pay changes. (DPH2). The

sizable correlations in pay changes that are statistically distinguishable from zero therefore

provide clear evidence against EL and in favor of DPH.

In Panel D, we also see that the wage growth correlations decline sharply over the first

few periods and then stabilize after the 3rd lag and remain fairly constant through the 9th

lag. We believe this decline may be evidence for stickiness in wages, which we can not

account for given our spot market assumption. We will therefore only fit the 4th through

9th lag in wage growth when we estimate the model.31

Lastly, figure 3b presents correlations of current pay with past, current and future

performance measures for up to 6 lags and leads, for the two experience groups. These

correlations are the empirical analogues to the simulated covariances depicted in figure 1.

We pay particular attention to these moments throughout the paper because we believe they

represent the major innovation to the previous literature and are particularly informative

for separately identifying EL and DPH models. To better understand the size of the step,

we present these correlations and the difference between past and future for a given lag/lead

upon request.
31The only way to generate such high early correlations in wage growth within the context of our model

would be if learning about productivity innovations is very rapid. However, such rapid learning is at odds
with several patterns in the data, discussed below. Our model therefore fails along this dimension. A
model which relaxes the assumption of spot markets will have better luck in fitting the joint patterns of
slow learning and high early correlations in wage growth. See Section 6 for a discussion of the spot market
assumption.
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time in table 3.

The evidence in figure 3b and table 3 is not entirely consistent with either the pure

EL or the pure DPH model. We do see higher correlations of pay with past performance

measures than with future performance measures (or, a “step”), consistent with EL3 and

inconsistent with DPH3 and DPH4. For young workers, the differences reported in table 3

are positive and statistically significant for the first three leads and lags. However, the step

size tends to be larger for older workers, violating EL4. Finally, for both past and future

performance measures, correlations are larger for older workers, partially consistent with

DPH3.

Table 3: The Asymmetry in Correlations of Pay with Lags and Leads of Performance

Thus, the reduced form evidence is not fully consistent with either EL or DPH.

3.4 Estimation Methodology

Our model produces a mapping from the 8 parameters
(
σ2q , σ

2
r , σ

2
κ, σ

2
0, σ

2
u, ρ, σ

2
z , σ

2
ω

)
to the

second moments of pay and performance. We estimate this model by matching the 68

moments described in section 3.3 via method of moments with equal weights on all mo-

ments.3233We obtain standard errors by bootstrapping with 500 repetitions.34

As noted above, we estimate three versions of the model. First, we impose σ2κ = σ2r = 0,

eliminating any heterogeneous dynamics in productivity. This yields the pure EL model.

Second, we impose σ20 = σ2z = 0, implying the firm has full information (since there is no

noise in the private signals the firm observes), obtaining the pure DPH model. Third, we

estimate the model with no restrictions, combining EL and DPH in a single model.

32We use the identity weighting matrix, rather than a two-step approach with optimal weights. Some
moments are indeed estimated more precisely than others in the data (for example, table 2 shows that the
precision of the estimated variance and auto-correlations in pay is an order of magnitude greater than that
of the other moments). However, as explained in section 2.2, these are not the key moments for separately
identifying learning from productivity models. Optimal weighting would emphasize these moments at the
expense of the moments that we believe to be particularly informative for our investigation. We have instead
chosen to weigh all moments equally.

33We generate a candidate set of moments by simulating data at a point in the parameter space, then
aggregating to the moments by experience group in the exact same manner as in the actual data. We then
minimize a distance function (the sum of squared distances of the empirical and the candidate moments) by
going through four optimization routines, alternating between Newton-Raphson and the simplex method.
After each routine, we use the parameter estimate obtained from the previous routine as our starting value
for the next step. To obtain the point estimates, we have also worked with a grid search in starting values
to ensure that we have found global minima.

34We randomly sample with replacement from the data to generate the bootstrapped moments. We then
estimate the parameters, with the same method described above, to match these moments, taking as starting
values the parameters values shown in table 4.
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4 Estimation

Table 4 displays the parameter estimates for the three models described above and discuss

the fit of the model using figures 4-7. These figures contrast the empirical moments (solid

dots for young and hollow dots for older workers) with the predicted moments based on

the estimated parameters for a given model (solid lines for young and dashed lines for older

workers).

Table 4: Parameter Estimates

Figure 4: Correlations of Pay and Performance

The Pure Employer Learning Model

Panel B of figure 4 and figure 5 summarize the results of the pure EL model. Panel A of

figure 5 shows that it roughly matches the variance of wages across experience levels (EL2).

The learning model also roughly fits the auto-correlations in performance (panel B), even if

it does not reproduce their differences across experience. Regarding the auto-correlation in

wages (panel C), it matches the levels and differences across experience groups, but not the

decline in the auto-correlations with lags.35 By construction, the model predicts that wages

follow a random walk (EL1) and is contradicted by the positive correlations in pay-growth

observed in the data (panel D.)

Figure 5: Results for the pure EL model

As is evident in Figure 4, panel B, the pure EL model does not fit the correlations be-

tween pay and performance ratings that we believe to be the most important new empirical

evidence we add to the literature. Though it can fit the higher correlations of pay with

past than with future performance measures (EL3), it does also predict a much smaller step

among older workers than is found in the data (EL4). Most importantly, it fails to repro-

duce the empirical fact that the correlations between pay and performance at all leads and

lags are greater for experienced workers. A general feature of pure EL models is that pay is

less highly correlated with past performance measures among the more experienced workers

as firms rely less on each individual measure when setting pay. This failure is therefore not

the result of particular distributional assumptions but rather reflects a more general failure

of the pure learning model.

Overall, though the data is consistent with EL2 and EL3, it contradicts EL1 and EL4.

35Because productivity is fixed, the learning model cannot explain performance auto-correlations that are
rising in experience. Auto-correlations of wages increase in experience because firms revise their expectations
less for older workers when new information arises and thus wages are more stable.
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The Pure Dynamic Productivity Heterogeneity Model

Figure 4, panel C and figure 6 show how the pure DPH model fits the data. Along a

number of dimensions, this model does better than the pure EL model. We find that the

variance of heterogeneous growth term κi reported in Table 4 is non-zero generating positive

correlations in pay changes (DPH1), even if these are smaller than those in the data (figure

6, panel D). The pure productivity model also fits the auto-correlations in performance

(panel B) and wages (panel C) better than the learning model did. However, the model

does poorly in fitting the variance of log pay across experience (panel A). Growth rate

heterogeneity implies that the implied variance in wages rises in the square of experience

(DPH2), producing the convex pattern in panel A that is not present in the data.

Figure 6: Results for the pure DPH model

Turning to our main set of moments (figure 4, panel C), the evidence regarding the

pure DPH model is also mixed. Consistent with DPH3, the empirical correlations between

pay and performance are increasing in experience . However, within experience, the model

implies that the correlations with current pay are larger for performance measures collected

in the future, resulting in the upward slope of the lines. Clearly, the empirical moments

do not show this upward slope. Furthermore, the pure DPH model cannot rationalize the

discontinuity at 0 (DPH4).

Thus, while the data are consistent with DPH1, they are only partially consistent with

DPH3, and violate DPH2 and DPH4.

The Nested Model

Finally, we show results from the nested model in figure 7 and panel D of figure 4. Overall,

combining EL with DPH helps substantially to fit the observed patterns in the data. Panel

D of figure 4 shows that the nested model can fit the step in the correlations of pay across

lags and leads of performance, for both young and older workers. Figure 7 shows that the

nested model succeeds in fitting the auto-correlations for performance (panel B) and for pay

(panel C), both across experience and across lags. It is also able to fit high correlations of

pay changes (panel D). The nested model however fails to fit the concavity in the variance of

log wages across experience (panel A) since the estimated heterogeneity in κi is large.36 It is

worth noting, though, that compared to the pure DPH model, the nested model rationalizes

a larger role for κi, which helps fit the correlations of pay changes. This is because with

imperfect information, innovations in κi take time to be priced into pay, thus reigning in

36We find that the heterogeneity inκ contributes substantially to diverging productivity over the life-
cycle. One standard deviation in κi corresponds to 45% of extra productivity growth over 30 years, while
one standard deviation of the sum of random walk components over 30 years amounts to about 10-15% of
extra productivity growth.
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the convexity in the increase of pay variance with experience.

Figure 7: Results for the combined model

Turning to the estimates of learning parameters, we find that the variance in both the

initial signal (σ20) and the dynamic signals (σ2z , σu
2) are substantially smaller for the nested

model than for the pure EL model. The latter requires more signal noise to match the

evidence for learning even at higher experience levels. The nested model instead allows for

much less signal noise. The variance of log wages continues to increase because productivity

itself evolves and because firms need to learn about this moving target.

Testing the Three Models

Our discussion so far has focused on the qualitative fit of the models. Statistically, we clearly

reject the pure EL and DPH models in favor of the nested model. Using a Wald test, we

reject the restrictions of the pure DPH model (σ0
2 = σz

2 = 0) against the unrestricted

model at a 95% significance level (the χ2 statistic with two degrees of freedom is 7.51). The

restrictions of the pure EL model (σκ
2 = σr

2 = 0) are rejected at any reasonable significance

level with a χ2 of 487. These Wald statistics are derived using the weighting matrix of our

objective function, which weights all moments equally.

We can also test the fit of the models using the squared distance of the fitted from the

observed moments, using the sampling variation of the observed moments as the weighting

matrix. The resulting χ2 has 60 degrees of freedom for the nested model and 62 degrees of

freedom for the pure EL or DPH model. Without a doubt, none of our models fits the data

using this statistical criterion. The test statistic for the EL model is 64,926, that for the

DPH model is 1,619 and the statistic for the nested model is 2,035.37 In our view, it is not

surprising that models with six or eight parameters will be rejected on the basis of fitting

68 moments obtained from a sample with almost 60,000 observations.

Overall, we interpret our estimates as supporting a model that combines elements of EL

with DPH.

5 Interpretation

In this section, we interpret the estimates of the nested model. We discuss the implied

variation in productivity and wages over the life-cycle and how far productivity and wages

can deviate from each other at different ages because firms are imperfectly informed. We

then turn to the question of how incentives to engage in productivity enhancing activities

are impacted by imperfect labor market learning.

37To understand why the test statistic for the nested model exceeds that for the pure model, remember
that this test statistic is not based on the criterion function for estimating the parameters. Therefore the
test statistic for the nested model is not necessarily smaller than that of the restricted models.
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5.1 Productivity and Wage Variance of the Life-Cycle

In this paper we strive to understand how EL and DPH each contribute to rising pay dis-

persion over the life-cycle. Individual pay is given by the sum of individual productivity and

firms’ expectation errors about worker productivity. To illustrate the role of productivity

evolution and imperfect learning, figure 8 presents the variances of these two components

implied by our estimates of the nested model as a function of experience. We should note

that this decomposition of the variance in residual log wages needs to be taken with a grain

of salt. The experience profile in the variance in log wages is a set of moments which we

have particular difficulty pinning down.

Figure 8: Variances in productivity, wages and expectation error, by experience

The top line shows the variance in log productivity with the variance of log wages just

below. Even at 30 years of experience, the variances of wages and productivity are quite

similar (0.174 and 0.154, respectively). Clearly, the shape and magnitude of the variance

of log wages over the life-cycle derive from the shape and variance of productivity. Thus,

to understand why wages diverge between individuals over the life-cycle means first and

foremost understanding why productivity evolves heterogeneously.

Expectation error accounts for the difference between wages and productivity. During

the first few years in the labor market, the variance in the expectation error declines as

firms learn about differences in initial productivity, qi0, and the persistent component of

productivity growth, κi. After a few years however, the variation in the expectation error

stabilizes around 0.022, reflecting that firms must continue to learn about the constantly

accruing random innovations in productivity.

While it might seem that the variance of the expectation error is small and that thus

imperfect learning is of small consequence, we would disagree. The implied standard devia-

tion for the expectation error is about 0.15 even late in the worker’s career. This means that

the average expectation error is about 10% of annual productivity for most of the life-cycle.

Even for experienced workers, firms make sizable errors when estimating productivity and

face substantial incentives to learn about how productive their workers are. It is plausible

that worker turnover and human resource policies are substantially shaped by employer

learning.

We conclude that the increase in the variance of wages is largely sustained by heteroge-

neous productivity evolution rather than by learning about productivity differences among

younger workers. At the same time, firms continue to make sizable expectation errors about

the productivity of even seasoned workers. Worker productivity is not an immutable con-

stant. Instead, firms continue to learn about how the skills of workers evolve, even late in

their careers: They try to hit a moving target.
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5.2 Incomplete Learning and the Returns to Investment

We are now in a position to answer a simple, yet fundamental question: If individual

productivity at experience t increases by 1%, what fraction of the present discounted value of

this increase accrues to the individual? If this fraction is less than one, then the incentives to

privately invest in human capital fall short of the full social returns. In this case, investments

that are difficult to observe on the part of employers – such as health investments or efforts

to keep up with technological change and/or prevent depreciation of existing skills – will be

below socially optimal levels.

For a time, any increase in productivity will only partially be priced into wages. Even-

tually, wages catch up with productivity and only then will individuals fully benefit from

any changes in their skills. As workers age, the period during which wages fully reflect

productivity shortens relative to the time that wages only partially reflect productivity, so

that a smaller fraction of any productivity change accrues to older individuals. This effect

occurs in addition to the well-known horizon effect in optimal investment decisions: that

older workers will invest less because they have less time to reap the benefits of investments.

The size of the share of the return to human capital investments going to workers and how

rapidly it declines depends on how fast firms learn and the discount rate individuals face.

In Table 5 we present estimates of the fraction of a productivity increase that accrues to

individuals at different points of the life-cycle. We base these estimates on the parameter

estimates for the nested model as well as a range of discount rates varying from 3-10%.

For all of these estimates we assume that individuals work for 40 years. For various points

over the life-cycle, we report how much the present discounted value of earnings changes

relative to the present discounted value of productivity in response to a permanent, one unit

increase in productivity. These estimates, while admittedly rough, provide an indication of

how important learning and incomplete information can be for understanding investment

patterns along the life-cycle.

Table 5: The Wedge between Social and Private Returns to Productivity Investments

Regardless of the discount rate considered, we find that the share of any productivity

increase going to workers is greatest prior to entering the labor market. This is because

firms receive fairly precise signals about initial productivity differences (σ20 is small). During

the first 15 years of individuals’ careers, between 60 and 80% of the social returns to

productivity changes are captured by individuals, depending on the discount rate. However,

as individuals approach the half-way mark of their careers their share of the return declines

rapidly. With a discount rate of 5%, we observe that during the first 10 years about 75% of

the returns are captured by workers. This percentage declines to about 65% after 20 years,

40% after 30 years and only about 25% after 35 years of experience.

These estimates suggest that incomplete learning by employers can generate large gaps
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between the private and the social returns of human capital investments for older workers.

In contrast, these gaps are relatively small for young workers. For younger workers, our

results are consistent with Lange (2007) who finds that initial expectation errors about

productivity differences existing at the beginning of individual careers decline by about half

in the first 3 years and 75% during the first 8 years.38 Our parameter estimates imply that

expectation errors about productivity differences existing at the beginning of individual

careers decline by about one third within 3 years and 70% within 8 years. Thus, our

estimates about the speed of learning about initial productivity differences are strikingly

consistent with those of Lange, despite the differences in methodologies.39 Similar to Lange,

we therefore conclude that signaling about existing productivity differences is not likely to

be the main motivation for obtaining additional schooling degrees.

However, in contrast to the static model in Lange (2007), our estimates suggest that

incomplete learning can severely mis-align incentives late in individuals careers. As evident

from Table 5, incomplete learning generates the largest gaps between the private and social

returns to investing into human capital among the most experienced workers. Of course,

these results are obtained in the context of a model with exogenous productivity, no private

information, and the absence of strategic behavior on the part of workers and are therefore

only suggestive. However, our estimates suggest that EL can have important implications

for behavior of older workers. This is in sharp contrast to the existing literature, which has

focused almost exclusively on young workers.

6 Discussion of Alternative Explanations

Much of our discussion above has focused on the finding that past performance correlates

more highly with pay than does future performance, even at high experience levels and that

the correlation of pay with performance continues to increase over the life-cycle. We ratio-

nalized these findings by concluding that productivity evolves heterogeneously throughout

the life-cycle and firms continue to learn about this moving target. Here we consider alter-

native explanations for these findings. We focus on three separate categories: measurement

issues, the spot markets assumption, and attrition.

38Lange (2007) builds on the empirical strategy proposed first by Farber and Gibbons (1996) and developed
by Altonji and Pierret (2001), using data on the AFQT from the NLSY 1979, to estimate how quickly firms
learn about heterogeneity in worker productivity. He argues that this speed of employer learning is crucial for
understanding how relevant signaling motives are in schooling decisions, because if firms learn rapidly about
worker productivity, then workers have little reason to signal their productivity by taking costly actions such
as acquiring schooling.

39Firms learn about 2 productivity states, κi and qit. This imparts some complicated dynamics into the
speed of learning, which does not allow us to summarize the speed of learning in a single parameter, as in
Lange (2007). The dynamics in fact generate overshooting, such that initial productivity differences in qi0
will have a more than one-for-one impact on log wages for part of the individuals life-cycle.
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6.1 Measurement Issues

In order to remain parsimonious, yet still extract meaningful information from the subjective

performance evaluations, we have placed some degree of discipline on their structure. In

particular, we assume that the signal value in the performance evaluations is constant over

the life-cycle, and that the performance ratings are correlates of current productivity, rather

than statements on how workers performed relative to expectations. We discuss these two

assumptions here starting with the latter.

We interpret performance ratings as correlates of overall productivity relative to a peer

group. An alternative interpretation is that they measure whether the worker met, exceeded,

or fell short of expectations during a given time-period. We did not adopt this interpretation

because it is inconsistent with a few simple facts in the data. Specifically, we showed above

that past performance measures and past wages are highly predictive of future performance

measures. The ability to predict performance measures using past variables implies that

these cannot simply reflect deviations from expected performance, because deviations from

expected performance are necessarily uncorrelated with variables that are available when

expectations are formed.

Another worry is that our model is mis-specified because the signal quality might vary

over the life-cycle rather than remain constant. However, it is unlikely that allowing for

such life-cycle variation in signal quality would overturn our main conclusion that EL and

DPH are jointly present. Consider for instance the possibility that performance evaluations

become more precise as workers age. This would lead firms to rely more heavily on per-

formance evaluations obtained later in life. Nevertheless, this extension would not suffice

to reconcile the pure EL model with the data. The data reveals fast learning even among

young workers so that almost all information about workers in a pure EL model is revealed

early on regardless of the quality of signals at older ages. Thus, even with high quality

signals late in life, we would not be able to reconcile the pure EL model with the observed

patterns in the data. Similarly, declines in the signal quality with age are likewise inconsis-

tent with the pure EL model, since this would imply that learning would be absent among

older workers. Again this is at odds with our data.

6.2 The spot market assumption

We assume throughout that workers are paid their expected product. This assumption

bought us a tractable model and allowed us to compare our results to the prior literatures

on EL and DPH which likewise assume spot markets. However, a number of realistic

models violate this assumption. In this subsection, we discuss how incentives, and imperfect

competition might alter our results. Due to the complexity of models that incorporate such

assumptions, the discussion remains necessarily informal.
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Incentives

Incentives in firms are provided in various forms. One possibility is that pay is directly linked

to current performance measures. Such a direct link of pay with current performance will

induce current pay to be more highly correlated with current performance measures than

with those in the past or the future. Our data however does not show that the correlations

of pay with current performance exceed those in the recent past. The data therefore does

not support direct pay for performance.40

Another possibility is that firms link pay raises to performance in an effort to elicit higher

effort. Tournament models (Lazear and Rosen 1981) likewise provide incentives by linking

future pay to performance measures via promotions. These forms of deferred compensation

are difficult to empirically distinguish from EL using the pay-performance correlations that

we have stressed in this paper. One reason is that linking pay to expected productivity in

the way prescribed by the EL model does itself generate incentives for providing effort if

effort and skills are difficult to distinguish (as in the career concerns model of Gibbons and

Murphy 1992). Fundamentally, models of moral hazard and incentive pay as well as models

of employer learning are both based on incomplete information on the part of firms, making

it extremely challenging to cleanly separate and identify the role of both.

While we cannot rule out such deferred compensation models, we do note that our

results are robust various ways of treating job levels.41 This somewhat allays concerns that

a tournament model of promotions and associated pay rises drives our results. However,

lacking more information on the structure of pay setting and promotions, we are forced to

simply note this identification problem with the hope that in the future, better and more

comprehensive human resource data will permit progress in testing and separating models

of incentive provision through deferred compensation from models of employer learning.

Imperfect Competition

In non-competitive labor markets, firms will try to extract informational rents from their

employees. We conjecture that this will result in a less sharp discontinuity (“step”) in the

correlations between wages and performance measures at various leads and lags because

markets do not force firms to price new information into wages immediately. For example,

after a firm receives positive information about a worker, it might raise wages only when the

worker receives an outside offer. In models with search frictions outside offers arrive only

infrequently and the discontinuity will therefore be less sharp. We would also expect the

40Note that our pay data does not include bonuses. Frederiksen and Lange (2013) examine the bonus data
available between 1981 and 1988 and find some support that bonuses might be used to set direct incentives.
However, because bonuses are a small fraction of total compensation, they find little role for direct incentives
in overall pay.

41We can residualize pay and performance on job level, make performance measure relative to other
workers in the same level, and restrict the data to workers who do not change job level, all producing similar
results.
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discontinuity to be less sharp if the firm had contracts with limited commitment (a la Harris

and Holmstrom 1982), since there also, innovations to productivity or new information

would take time to be priced in.

These frictions might provide a rational for why wage growth is correlated over time

- and correlated more highly at short leads. For example, models where incumbent firms

hold an information advantage imply that wages only reflect new positive information about

their employees after this information has been learned by outside firms. If this is the case,

then wage growth in response to positive information should be correlated over time - and to

be correlated more highly at short leads and lags (as we observe in the data). Furthermore,

such frictions could result in pay being correlated somewhat more highly with performance

at a few lags rather than with the most recent performance measure. Labor market friction

therefore might rationalize the observed dip in the correlation patterns in figure 3b for

cor(wit, pit−1).

6.3 Selective Attrition

Attrition is an obvious concern when analyzing data on workers at a single firm. Our

exercise relies heavily on the correlations of pay with lags and leads of performance, thus

we must necessarily restrict our attention to the subset of workers who survive at the

firm for several years. If attrition is systematically related to observable or unobservable

characteristics of the workforce, which is likely to be the case, then our results will be

biased. The crucial question is then how severely selected the survivor sample is? We

provide a detailed discussion of attrition in a web appendix in which we examine both how

turnover is related to observables and how robust our estimates are to non-random selection

of survivors. Here we briefly summarize our main findings. In the end, we conclude that

any bias generated by selective attrition is likely to be very small.

First, as noted by BGH, quits at this firm are relatively rare, with roughly 10% annual

attrition. In our sample, only 6% of new jobs end within a year and 19% end within

two years. The corresponding population averages for full-time jobs reported by Farber

(1994) over roughly the same time period are 50% and 66%, respectively. Second, as

we demonstrate in the web appendix, the relationship between attrition and observable

characteristics is relatively weak. Thus selective attrition will not generate substantial

changes in the distribution of observables over time.

To illustrate this point, we compare the joint distribution of wage and performance

deciles across two groups of workers: a base sample and the 54% of the base sample who

will eventually survive for at least 10 years.42 We can thus compare the eventual survivors

in this firm with the full set. The scatter in figure 9 contrasts the share in each overall wage

decile-performance decile category in the base sample on the x-axis with the share in the

42Our base sample includes all workers younger than 55 who entered the firm between 1970 and 1978, so
they can potentially be observed for at least 10 years.
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eventual survivor sample on the y-axis. Absent selective attrition and sampling variation,

this scatter should line up on the 45-degree line. With selective attrition, we should expect

the shares to move away from the 45 degree line. As figure 9 shows, the distributions are

quite similar, with most of the points lining up on or near the 45-degree line.

Figure 9: Wage-Performance Distribution of Survivors and Attritors

In the web appendix, we also perform an attrition-corrected estimation which allows for

selection on observables.43 Our results are very similar when applying this correction. This

and other evidence detailed in the appendix convinces us that selection on observables does

not seem to be a significant problem in our data.

We have also explored the robustness of our estimates to attrition based on unobserv-

ables. We do this by simulating data from the parameter estimates of our nested model

augmented with a variety of attrition models that might be of concern, including extreme

forms. We then compare our estimating moments in these simulated samples to the true

moments in the data. For details, we refer the reader to the web appendix, and simply note

here that our set of estimating moments is quite robust to various forms of attrition.

7 Conclusion

In this paper, we provide new evidence on employer learning and productivity evolution

by exploiting performance evaluations, along with pay data, from a panel of workers in a

single firm. We derive a nested model and show how we can uncover both the learning

and productivity parameters by matching moments in the data. We find that problems of

accurately predicting productivity are important for employers and that average expectation

errors are large at all stages of individuals careers. However, the learning process is not the

primary driver of wage dynamics. Instead, heterogeneous variation in productivity drives

most of the observed increase in the variance of wages over the life-cycle. These findings

represent a significant reinterpretation of the employer learning literature.

An important caveat to our conclusion is that we are only able to study one firm and

further, only one occupation (broadly defined). These workers have already been promoted

to manager. Thus the market probably had opportunities to learn about these workers be-

fore they entered our sample, and these workers probably had an opportunity to accumulate

skills heterogeneously. In the future, we hope to analyze other data sets containing pay and

performance measures to establish how generalizable these findings are.

43We use the parameters from the nested model to simulate a data set of 1,000 workers entering the firm
at each experience level for a total of 40,000 workers entering with experience levels 1-40. For a given point
in the parameter space of the nested model, we simulate a history of wages and performance ratings under
the assumption that no worker attrites. We then apply a selection rule based on the empirical relationship
between wages, performance, and attriting, and thus obtain a selected sample. Using this selected, simulated
sample, we generate our estimating moments. We can then estimate the parameters by minimizing the
distance between the observed and simulated moments in the same manner as before.
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We believe that this paper contributes to the literature on the influences of worker’s

careers in two ways: methodologically and substantively. First, we provide and implement

an approach for estimating models of employer learning and dynamic productivity that

can be implemented when data contains multiple signals of worker productivity at various

points along the life-cycle. We hope that this approach will prove useful for analyzing

the growing set of firm level data sets comprising personnel records that are appearing

in the literature. Second, we show that employer learning continues throughout the life-

cycle and we provide evidence against the implication of the existing models on employer

learning (Farber and Gibbons 1996; Altonji and Pierret 2001; Lange, 2007) that incomplete

information and employer learning are particularly important early in the life-cycle. To

the contrary, our estimates imply that the incomplete learning will generate the largest

distortions in individual behaviors late in their careers.
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I A More General Class of Models

In section 2, we have presented a model with particular productivity and learning

structures. In this section, we show a more general class of models of learning about

worker productivity, drawing from Hamilton (1994). We will show how to derive

the second moment matrices of productivity signals and wages in this larger class

of models. To estimate the parameters of these models, one naturally will �t the

predicted and the observed second moment matrices of productivity signals and wages.
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I.1 The Productivity Process

In period 0 (before production starts), individuals are endowed with a (nqx1)�vector

of productivity parameters �i;0 with E [�i;0] = 0 and E
h
�i;0�

0

i;0

i
= P0: In subsequent

periods, productivity evolves according to a stochastic process represented by the

stochastic di¤erence equation:

�i;t+1 = ��i;t + "
�
i;t+1 (1)

"�i;t+1~N(0; R�)

This implies that the productivity states in period 1, the �rst period of actual

production are �i;1 = ��i;0 + "�i;1.

I.2 Prediction in the Initial Period

Before any production takes place, �rms draw a signal about �i0. This signal is

summarized by an initial (nzx1) vector of signals zi;0. This vector is not observed

in the data, but represents the information available to �rms at the beginning of an

individual�s career.

zi;0 = H 0
0�i;0 + "

z
i;0 (2)

"zi;0~N(0; Rz;0)

The dimensions of
�
H0; "

z
i;0; Rz;0; P0

�
are implicitly de�ned to conform to zi;0 and �i;0:

Based on the signal vector zi;0 �rms predict the state �i;0 :

b�i;0j0 = P0H0 (H0
0P0H0 +Rz;0)

�1
zi;0 (3)

= Kzzi;0
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Firms set wages based on this predicted state b�i;0j0 taking into account that pro-
ductivity will evolve between the pre-period and period 1 according to equation (1).

Firms best guess about productivity in period 1 is:

b�i1j0 = �b�i0j0
= �Kzzi;0

and the posterior variance of the expectation error is:

P1j0 = �(P0 �KzH
0
0P0) �

0 +R�

I.3 The Recursion

At the end of each period t > 0, a new (nxx1)�signal vector xit is drawn by the �rm.

xi;t = H 0
x�i;t + "

x
i;t (4)

"xi;t~N(0; Rx)

Based on this signal, the expected posterior of �it conditional on xit is:

b�itjt = b�i;tjt�1 + Ptjt�1Hx �Hx0Ptjt�1Hx +Rx��1 �xi;t �H 0
x
b�itjt�1� (5)

= b�itjt�1 +Kt

�
xit �H 0

x
b�itjt�1�

= (1�KtH
0
x)
b�itjt�1 +Ktxit

Again, when �rms form expectations they account for the evolution in productivity

described in equation (1). Therefore �rms best guess about productivity in period
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t+ 1 is:

b�it+1jt = �b�itjt (6)

= �(1�KtH
0
x)
b�itjt�1 + �Ktxit

The variance of the expectation error then evolves according to

Pt+1jt = �
�
Ptjt�1 �KtH

0
xPtjt�1

�
�0 +R� (7)

This de�nes the complete prediction problem of the �rm. The parameters are

(P0; Rz;0; Rx; R�; Hx; H0;�):

I.4 Wages

So far, we have described how the vector of individual productivity states �it and the

expectation of this state evolves over time. One component of the individual pro-

ductivity state is qit, the idiosyncratic component of log productivity. We now show

how log wages are related to log productivity. Because we assume that labor mar-

kets are frictionless spot markets and all information is common, we have that wages

W �
it equal expected productivity: W

�
it = E [Q (x; t)QitjI t] = E [Q (x; t) exp (qit) jI t] :

Here Q (x; t) is a productivity pro�le common to all individuals and Qit represents

individual productivity and I t represents the information set available at time t. We

assume also that wages are measured with multiplicative measurement error 
it:

We have made a number of normality assumptions. One advantage of these as-

sumptions is that expected log productivity bqit is normally distributed in each period.
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We can therefore write:

Wit = Q (x; t)E [Qi;tjIit] 
it

= Q (x; t)E [exp (qi;t) jIit] 
it = Q (x; t) exp
�bqit + 1

2
v (t)

�

it

where v (t) is the variance of the expectation of log productivity. Taking logs, we

obtain

wit =

�
q (x; t) +

1

2
v (t)

�
+ bqit + !it (8)

= h (x; t) + bqit + !it
where !it is the noise in the measurement error with variance �2!. We assume that

!it is uncorrelated with all other variables in the model.

We residualize wages to remove the common age pro�le h (x; t) and denote the

residual as rit:

I.5 Link to Observable Data: A State-Space Speci�cation

The next task is to derive the second moments that the model implies for observable

quantities (rit; pit). We note that our problem takes the form of a linear state-space

speci�cation. The states that describe individuals are the individual productivity

states �it as well as the expectations �rms hold b�it. We stack these two vectors and
denote the state vector by �it =

�b�it �it

�0
: The states evolve in a linear stochastic

way and the observed data is linearly related to the states. We denote the observed

data as yit =
�
rit pit

�0
.

The linear state space model consists of three parts. First, we need to specify

how the state evolves. This is done in equation (9) : Second, we need to specify how

the states map into observed variables. This measurement equation is given by (10).
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Finally, we need to specify the distribution of the initial state �i1, the forcing variables

vit; and the unobservable noise in the measurement equation eit:

�it+1 = Ft�it + vit+1 (9)

yit = M�it + eit (10)

�i1 =

�
�Kzzi;0
�i1

�
The matrix M has as many rows as there are observable objects. The vector eit

contains the noise in the measurement equations. The matrix Ft is given by

Ft =

0B@� (1�KtH
0
x) �KtH

0
x

0 �

1CA
and the innovation vit+1 to the state vector is de�ned as:

vit+1 =

�
�Kt"

x
it

"�it

�

The (Kz; Kt)�matrices were implicitly de�ned in equations (3) and (5) above.

I.6 The 2nd Moment Matrix of Observables

We can now derive the variance-covariance matrix for the observables yit and yi� .

Without loss of generality, we can limit ourselves to � � t:

Because eit contains only measurement error, we can write the second moment

matrices of the observables as follows:

E
h
yity

0

i��t

i
=ME [�it�

0
i� ]M

0 + E [eite
0
i� ] (11)
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The M are deterministic and we therefore just have 2 components E [�it�
0
i� ] ; and

E [eite
0
i� ] that need to be determined as functions of the parameters of the model. The

matrix E [eite0i� ] is 0 for � 6= t and is directly given from the is variance-covariance

matrix of measurement error within t. We therefore simply need to determine how

E [�it�
0
i� ] is related to the parameters.

Tedious, but straightforward algebra yields

E [�it�
0
i� ] =

j=tP
j=2

( 
l=t�1Q
l=j

Fl

!
E
h
vi;jv

0

i;j

i l=��1Q
l=j

Fl

!0)
+

�
l=t�1Q
l=1

Fl

�
E [�i1�

0
i1]

�
l=��1Q
l=1

Fl

�0
(12)

where

E [�i1�
0
i1] =

0B@�Kz (H
0
0P0H0 +Rz)K

0
z�

0 �KzH
0
0P0�

0

�P0H0K
0
z�

0 �P0�
0 +R�

1CA (13)

and

E
h
vi;jv

0

i;j

i
= E

0B@�Kj�1RxK
0
j�1�

0 0

0 R�

1CA (14)

We have thus shown how to generate E [yty� ] as functions of the parameters

(P0; Rz;0; Rx; R�; Hx; H0;�) and the measurement matrix for any dynamic speci�-

cation of productivity that follows equation (1) and any normal learning model that

follows equations (2) and (4) :

I.7 The Nested Model as a Member of the General Linear

State Space Models

In this Appendix, we have described how the second moment of observable variables

is linked to the parameters of a general linear learning model. The nested model

encountered in Section 2 is a special case of such a linear learning model. We now show

in the remainder of this appendix what the nested model implies for the parameter
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matrices of the learning model: (P0; Rz;0; Rx; R�; Hx; H0;�) andM: This will allow us

to implement equation (11) together with equations (12) ; (13) ; and (14) to generate

the covariance matrices of the wage residuals and performance ratings.

De�ne �rst the individual productivity states as �it = (b�it; �it)0 where:

�it =

0BBBB@
qit

�i

"pit

1CCCCA
Note here that we let "pit (the noise term in pit, which is governed by the auto-

correlation term, � and an iid error term) enter as an individual state.

The individual state evolves as

�it+1 =

0BBBB@
qit+1

�i

"pit+1

1CCCCA =

0BBBB@
1 1 0

0 1 0

0 0 �

1CCCCA
0BBBB@
qit

�i

"pit

1CCCCA+
0BBBB@
"rit+1

0

uit+1

1CCCCA
= ��it + "

�
it

The vector vit+1 is therefore given by vit+1 =
�
�Kt"

x
it

"�it

�
.

Now, the measurement equation is yit = M�it + eit: Thus, we need to de�ne M

and eit: We assume that there is measurement error in rit but that pit is observed

without error in our data. Thus:

eit =

0B@ !it

0

1CA

The measurement error variance is �2! and thus E [eite
0
it] =

0B@�2! 0

0 0

1CA :
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Next,

M =

0B@1 0 0 0 0 0

0 0 0 1 0 1

1CA

Then

P0 =

0BBBB@
�2q 0 0

0 �2� 0

0 0 0

1CCCCA

H0 =

0BBBB@
1

0

0

1CCCCA

Hx =

0BBBB@
1 1

0 0

0 1

1CCCCA
Rz;0 = �20

Rx =

0B@�2z 0

0 0

1CA

� =

0BBBB@
1 1 0

0 1 0

0 0 �

1CCCCA

R� =

0BBBB@
�2r 0 0

0 0 0

0 0 �2u

1CCCCA
This specialization of the general linear state space model represents the nested

model we estimate in this paper.
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II Identi�cation

We now consider the identi�cation of the pure EL and DPH models using second

moments of wages and performance signals.1 To simplify the discussion, we assume

the length of individuals� careers is unbounded and that we can therefore observe

these moments at arbitrarily high experience levels.

II.1 The Pure Employer Learning Model - Identi�cation

The pure EL model allows only for learning and �xes the idiosyncratic component

of worker productivity qit = qi over the life-cycle. This amounts to assuming that

there is no heterogeneity in the drift �i nor in the individual innovations "rit and

is achieved by setting �2� = �2r = 0: There remain 6 parameters that need to be

identi�ed:
�
�2q; �

2
0; �

2
u; �

2
!; �; �

2
z

�
:

The pure EL model implies that in the limit wages asymptote towards individual

productivity. Therefore, we can identify the variance of productivity (�2q) and the

variance of the measurement error (�2!) using the variance and covariance of wages as

experience grows. In particular, we obtain
�
�2!; �

2
q

�
from limt!1 (v (wt)) = �

2
q + �

2
!

and limt!1 (cov (wt; wt+1)) = �
2
q:

The auto-correlations of pit with pit�k at di¤erent lags k inform us about the

parameters (�; �2u) that govern the signal noise "
p
it. As t grows, the distribution of pit

converges to an ergodic distribution which depends only on the parameters � and �2u.

In particular, we have that limt!1 v (pit)) = limt!1 v (qit + "
p
it) = �

2
q+�

�2u
1��2 and that

cov (pit; pit+k) = cov
�
qi + "

p
it; qi + �

k"pit + �
k
j=1uit+j

�
= �2q + �

kvar ("pit) : Combining,

1As described in the data section of this paper, the performance ratings in our data are ordinal,
which implies that we do not observe variances or covariances of performance ratings with other
objects. Therefore, we show how auto-correlations in performance ratings and correlations with
wages at di¤erent experience levels allows us to identify models of learnings and productivity.
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we have that

lim
t!1

lim
k!1

cor(pit; pit+k) =
�2q

�2q +
�2u
1��2

(15)

lim
t!1

cor(pit; pit+1) =
�2q + �

�2u
1��2

�2q +
�2u
1��2

(16)

Since �2q is already identi�ed, we get
�2u
1��2 from equation (15) and � from equation

(16) :

This leaves only two parameters (�2z; �
2
0) that need to to be identi�ed. �

2
0 de-

termines how much information employers have about workers as they begin their

careers. We can identify this parameter using the variance of wages at t = 0, since

w0i = E[qijzi0] and var (w0i) = var (E[qijzi0]). Conditional on �2q; this variance

declines monotonically in �20 and we can therefore identify �
2
0 using the variance of

log wages for individuals beginning their careers.

The remaining parameter �2z governs (together with the already identi�ed �
2
u and

�) how much additional information becomes available in any period. Conditional on

(�20; �
2
u; �), the variance of w1i = E[qijz0i; p1i; z1i] declines monotonically in �2z (as the

signal becomes less informative). Therefore we can identify �2z using var (w1i), having

already identi�ed the other parameters of the learning model.

II.2 The Pure Dynamic Productivity Heterogeneity Model -

Identi�cation

The pure DPH model assumes that �rms have full information about worker pro-

ductivity and that wages equal productivity at all times. This assumption can be

imposed by restricting the signal noise for the unobserved signals to 0: �20 = �
2
z = 0:

There remain 6 parameters that need to be identi�ed:
�
�2q; �

2
r; �

2
u; �

2
!; �

2
�; �
�
:

Because wages at all times equal expected productivity, we can write �wit =

44



wit+1 � wit = �i + "
r
it+1 + !it+1 � !it. This implies that cov (�wit;�wit+2) = �2�;

cov (�wit;�wit+2) = �2� � �2!, and var (�wit) = �2� + �
2
r + 2 � �2!: This system is

triangular and can easily be solved for the parameters (�2�; �
2
r; �

2
!). Furthermore, we

can identify �2q using var (wi0) = �
2
q + �

2
!:

The remaining parameters that need to be identi�ed are the parameters (�; �2u)

that govern the noise in the performance rating pit: To identify these we rely on the

correlations between wages and performance ratings:

corr (pit; wit) =
var (qit)

(var (qit) + var ("
p
it))

1=2 (var (qit) + �2!)
1=2

(17)

Since all the productivity parameters are identi�ed, we can treat var (qit) and

�2! as known. Thus, eq (17) solves for the variance of the signal noise var ("
p
it) for

arbitrary t:

lim
t!1

var ("pit) =
�2u

1� �2 ) �2u =
�
1� �2

�
lim
t!1

var ("pit) (18)

Since we know the var ("pit) for arbitrary t, we can exploit equation (10) in the

text to get

�2 =
var

�
"pit+1

�
� limt!1 var ("

p
it)

var ("pit)� limt!1 var ("
p
it)

(19)

These last two equations therefore deliver the parameters � and �2u:We have thus

established the identi�cation of both the pure EL and DPH models.
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Table 1 Summary Statistics

Years 1969‐1988

Data Description
Managers of a medium‐
sized US firm in the 
service sector

# Employees1 9391
# Employee‐years 56231

% Male 76.4%
% White 89.6%

Age
39.57
(9.47)

Education
% HS 17.9%
% Some College 19.8%
% College 36.1%
% Advanced 26.3%

Salary2 ($1,000s)
$54.003
(25.562)

Performance3
3.13
(0.71)

[n=36569]
Performance Distribution

1 0.008
2 0.175
3 0.500
4 0.317

Notes: Parentheses contain standard deviations.  

1. Sample includes all employees who have a pay or performance 
measure between the ages of 25 and 65 and at least one more pay 
or performance measure, with a non‐missing education variable.

2. Salary is annual base pay, adjusted to 1988 dollars.

3. Performance is a categorical variable which we recode to be 
between 1 and 4, with 4 being the highest performance.
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1‐5 6‐10 11‐15 16‐20 21‐25 26‐30
0.044 0.065 0.083 0.100 0.112 0.114
(0.001) (0.002) (0.002) (0.003) (0.006) (0.007)

Experience  1 2 3 4 5 6
1‐15 0.969 0.935 0.903 0.871 0.840 0.813

(0.001) (0.002) (0.003) (0.004) (0.006) (0.008)

16‐30 0.990 0.975 0.958 0.940 0.921 0.903
(0.000) (0.001) (0.002) (0.003) (0.004) (0.005)

Experience  1 2 3 4 5 6
1‐15 0.568 0.413 0.315 0.207 0.155 0.154

(0.008) (0.011) (0.014) (0.016) (0.018) (0.026)

16‐30 0.659 0.527 0.420 0.323 0.219 0.205
(0.009) (0.013) (0.016) (0.019) (0.021) (0.027)

Experience  4 5 6 7 8 9 .
1‐15 0.086 0.07 0.077 0.06 0.06 0.081

(0.011) (0.013) (0.013) (0.015) (0.020) (0.017)

16‐30 0.083 0.079 0.088 0.076 0.055 0.047
(0.013) (0.016) (0.015) (0.018) (0.019) (0.020)   

Auto‐Correlations in Performance for lags 1‐6
Lags

Table 2 The Second Moments of Wages and Experience
Variances in Wages by Experience

Auto‐Correlation in Wages for lags 1‐6

Auto‐Correlations in Pay Changes for lags 4‐9
Lags

Lags

Experience
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‐6 ‐5 ‐4 ‐3 ‐2 ‐1
0.205 0.232 0.266 0.287 0.290 0.281
(0.025) (0.021) (0.017) (0.015) (0.013) (0.011)

0 1 2 3 4 5 6
0.249 0.266 0.263 0.265 0.253 0.234 0.232
(0.010) (0.011) (0.012) (0.014) (0.016) (0.018) (0.019)

‐6 ‐5 ‐4 ‐3 ‐2 ‐1
0.371 0.379 0.392 0.395 0.393 0.384
(0.019) (0.016) (0.015) (0.014) (0.013) (0013)

0 1 2 3 4 5 6
0.361 0.36 0.349 0.329 0.309 0.291 0.269
(0.013) (0.013) (0.015) (0.017) (0.019) (0.022) (0.024)

Ex
pe

rie
nc
e 
16

‐3
0

Table 2, cont'd The Second Moments of Wages and Experience

The table displays the second moments of wages and performance measures that form the basis of the estimation 
described in the paper. The same moments are displayed in figure 3a and 3b. The correlations involving 
performance measures are polychoric correlations. The correlations involving only wages are pearson correlations.

Correlation of Wages in t with lags and leads in performance
Lags

Leads

Lags

Leads

Ex
pe

rie
nc
e 
1‐
15
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Table 3 The Asymmetry in Correlations between Pay and Performance

Lag / Lead 1 2 3 4 5 6
Lag 0.281 0.290 0.287 0.266 0.232 0.205
Lead 0.249 0.266 0.263 0.265 0.253 0.234

Difference 0.032 0.024 0.024 0.001 ‐0.021 ‐0.029
(0.005) (0.010) (0.014) (0.018) (0.023) (0.028)

Lag / Lead 1 2 3 4 5 6
Lag 0.384 0.393 0.395 0.392 0.379 0.371
Lead 0.361 0.36 0.349 0.329 0.309 0.291

Difference 0.023 0.033 0.046 0.063 0.070 0.080
(0.004) (0.009) (0.014) (0.017) (0.021) (0.026)

Experience 1‐15

Experience 16‐30

To illustrate the content of this table consider column 1 for younger workers. This column contains 
first the correlation of the current wage with the performance measure received in the same year 
(0.281). This performance measure is the first that was not used in setting the current wage. Below, 
the column contains the correlation of the current wage with the last performance measure 
received before the current wage was set (0.249). Finally the table contains the difference of these 
two correlations and their standard error (0.032 and 0.005). The second column performs the same 
comparision, but uses the second performance measure received prior and after the current wage 
was set.
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Table 4 Parameter Estimates for 3 Models

Employer Learning Productivity Combined

productivity parameters:

σq
2 

(initial productivity)

0.118
(0.0057)

0.025
(0.0051)

0.037
(0.0072)

σr
2

(random productivity innovations)
‐

0.0040
(0.00032)

0.00049
(0.00040)

σ2κ
(heterogeneous growth)

‐
0.0000825
(0.0000023)

0.00015
(0.000016)

information parameters:

σ0
2

(noise on initial, private signal)

0.383
(0.061)

‐
0.114
(0.071)

σu
2

(noise on performance measure)

0.650
(0.062)

0.405
(0.031)

0.488
(0.051)

σz
2

(noise on repeat, private signals)

0.506
(0.131)

‐
0.206
(0.075)

measurement parameters:

σω
2

(measurement error in wages)

0.0049
(0.00021)

0.00030
(0.00048)

2.83e‐12
(4.95e‐12)

ρ
(auto‐correlation in performance)

0.645
(0.0084)

0.634
(0.0084)

0.640
(0.009)

Reported are the parameter values for the pure employer learning model, the pure productivity model and combined model. The pure 
employer learning model and the pure productivity model are estimated imposing zero restrictions on the relevant parameters. 
Standard errors are obtained by bootstrapping with 500 repetitions. 
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Table 5 The Share of Returns to Investments Going to Individuals

Experience 0.9 0.92 0.95 0.97
0 0.67 0.71 0.78 0.84
5 0.60 0.66 0.75 0.82
10 0.61 0.67 0.75 0.81
15 0.60 0.64 0.71 0.76
20 0.56 0.60 0.64 0.68
25 0.49 0.51 0.55 0.57
30 0.39 0.40 0.42 0.43
35 0.25 0.25 0.26 0.26

Discount Factor R

The table displays the increase in the present discount value of life‐time wages as a fraction of the increase in 
the present discounted value of remaining life‐time production associated with a unit increase in worker 
productivity at experience level t. These ratios are shown for different experience levels and for the specified 
gross discount factors. The calculations are based on the parameter estimates for the combined model 
presented in Table 4. We assume that individuals careers last for 40 years. 
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