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Abstract

We propose a new method to estimate rich dynamic models of health that

exploits longitudinal observations of multiple health measures. Our two-step

approach combines factor analysis with simulation methods, two techniques

first developed in different contexts. In the first step, we use factor analytic

methods to estimate age-specific static measurement models that determine

how latent health is related to observed health measures. This step also

recovers the unconditional nonparametric distribution of latent health at

each age. During the second step, we use the method of simulated moments

to estimate a stochastic dynamic model of latent health. Specifically, we

simulate the dynamic health process and use the previously estimated mea-

surement model to derive an implied set of moments that we can compare

with moments in the data. We demonstrate the method by estimating health

processes using data from the Health and Retirement Study. Our findings
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show the importance of using multiple health measures to estimate dynamic

models of health. Our estimates based on multiple health measures display

signficantly less persistence in health than do standard estimates obtained

using single measures of health.

1 Introduction

Elderly individuals’economic decisions depend on their health and how it

changes with age. As physical health deteriorates, the capacity to work

declines, leading some to retire from the workforce.1 Health also affects how

much the elderly consume and save, both because health influences pref-

erences directly and because the elderly save for future, uncertain medical

expenditures. To understand the economic choices the elderly make, one

needs to understand how health evolves stochastically with age. In recent

years, a literature has developed that estimates dynamic stochastic models

of latent health using health indicators available in recent panel surveys.2

In particular, this literature uses dynamic panel methods based on observ-

ing a single health measure, most often the self-rated health status (SRHS)

measure, in multiple periods. SRHS is very persistent across ages, which

leads this literature to find that health differences across individuals are very

1There is a large literature on the role of health in retirement. In a recent contribu-
tion, Bound, Stinebrickner, and Waidmann (2010) find that health plays a central role in
retirement behavior. They report that at age 62, those in poor health exit the labor force
at five times the rate of those in good health.

2Examples are Contoyannis, Jones and Rice (2004), Halliday (2008, 2010), and Heiss,
Börsch-Supan, Hurd, and Wise (2009).
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persistent. Clearly, however, any method based on a single health measure

depends critically on the validity of that measure. The measure must con-

tain little noise, it should be unbiased, and it should capture most aspects of

health. Although SRHS is widely accepted among researchers (including us)

as very informative, it is unlikely that any single health measure can satisfy

all these requirements. It is unlikely that the narrow empirical basis that

single health measures such as SRHS provide can adequately represent the

dynamics of health. However, our understanding of the economic choices of

the elderly will remain incomplete as long as we cannot represent the dy-

namics of health well. We therefore propose to enlarge the empirical basis

for estimating the dynamics of health to include a broad and diverse set of

health measures. The methodological challenge that we meed in this paper is

to develop and estimate dynamic models of health that are both suffi ciently

tractable to be useful in standard structural models of economic behavior

and based on multiple health measures that provide a broad, encompassing

description of physical health.3

Increasingly, individual micro-data sets, often with a panel dimension,

collect additional measures of health beyond SRHS. For example, the Health

and Retirement Study (HRS) contains other self-reported health measures

including an Index of the Ability to perform Daily Activities (IADL) and an

index of the ability to perform task that require general physical strength

3We do not consider mental health in this paper, although it would be straightforward
(even if numerically expensive) to extend the analysis to include mental health measures.
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(the “large muscle index”). The HRS also collects multiple clinical measures

such as a grip strength measure, a timed walk measure, and a measure of

lung functioning. All these measures contain information that can be ex-

ploited to describe health more broadly than if one simply relies on SRHS.

When we estimate our dynamic model, we use information from four dif-

ferent measures of health available in the HRS panel, including two clinical

measures. As such, our estimates have a much richer empirical basis than

existing approaches.

We conceive of health as a single latent index that evolves stochastically

over time. This latent health index maps onto measures of health observed in

the data. The challenge is to estimate both how health and health measures

are jointly distributed and how the health index itself evolves stochastically

with age. We split this problem into two parts. We first use a factor analytic

approach to estimate how health and health measures are jointly distributed

within age, then we estimate the stochastic process of health itself.

Our two-step approach based on both clinical and self-reported measures

of health has a number of methodological advantages for estimating the joint

distribution of health and health measures in the cross-section. First, we

estimate how health and health measures are jointly distributed conditional

on age before we estimate how health evolves with age. Consequently, our

estimates of the joint distribution of health and health measures conditional

on age are robust to misspecifying the dynamic process of health. Second, we

allow the relation between physical health and respondents’perceptions of
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their health to change with age. For example, a level of physical health that

might be reported as “fair”at age 50 could be perceived to be “excellent”

at age 85. To anchor how health is distributed at different ages, we use

the clinical measures. Third, we can identify a nonparametric distribution

of latent health because we exploit continuous measures of health. Unlike

previous work, we do not impose normality but instead allow the distribution

of health to exhibit skew and thick tails. We find these features of non-

normality to be important in the cross-section.

We consider three alternative dynamic models of health. The simplest

model treats the health index as a first-order autoregressive process.4 The

second specification augments the basic model with an endogenous mortality

equation. That is, we allow survival to depend on health and we estimate

this dependence in the model. The third model allows for measurement-

specific random effects. This model is motivated by the observation that

the auto-correlations of measurements across age are much larger than those

observed within age across measurements. To account for this fact, we allow

for individual random effects specific to each measurement.

Mirroring the standard findings in the literature, the basic specification

4We also considered a model that allows for an asymmetry in the regression to the
mean in the dynamic process. That is, we allowed the autoregressive component to be
of different strength depending on whether the individual is healthier or sicker than the
average individual in the population. This model was motivated by the intuitive notion
that recovery from sickness differs qualitatively from health differences between individuals
who are relatively healthy. When we estimated that model, we did not find strong evidence
for asymmetries in the regression to the mean and therefore do not report estimates from
that model here.
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displays a surprising degree of persistence in health. The autoregressive pa-

rameter is close to 1 and the variance in the health innovations is very low.

Only among men over 75 is there evidence for regression to the mean. Once

we allow for endogenous mortality, we find more rapid declines in health

among the oldest population, which are partially offset by dynamic selection

from the bottom of the health distribution. Allowing for endogenous mor-

tality, however, has little effect on how much persistence we find in health.

We still observe regression to the mean only among the oldest men and

we find little variance in health innovations. However, once we allow for

measurement-specific random effects, we find evidence for regression to the

mean for both genders and among most age groups. We also find that the

variance of health innovations increases by up to an order of magnitude for

all ages and both genders. Models with measurement-specific random effects

fit the data substantially better. Our findings support the need for multiple

measurements of health in estimating the dynamics of health in order to dis-

tinguish persistence in individual health measurements from persistence in

health overall.

Although we find much less persistence in the random effects model, we

caution against overstating this finding. Regardless of the model we estimate,

we find large health differences in the population at age 50 that tend to persist

over the remainder of the life-cycle.

Our work is related to multiple literatures, which we cannot adequately

review in the space available here. One important literature has made use of
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the multiple health measures in the HRS to address concerns that justifica-

tion bias in self-rated health might give rise to the large observed relations

between self-rated health and retirement behavior. Here, the work by John

Bound and co-authors (in particular, Bound (1991) and Bound, et al. (2010))

deserves particular mention.5 These studies rely on exogeneity assumptions

related to a subset of variables that is perceived to be less likely to be subject

to justification bias to implement either structural or instrumental variable

methods to estimate effects of health on retirement that are free of justifica-

tion bias. These studies do not focus on the dynamics of health or the relation

between latent health and the observed health measures. More closely re-

lated to our work is the recent work on the dynamics of health exemplified by

Contoyannis, et al. (2004), Halliday (2008, 2010), and Heiss, Börsch-Supan,

Hurd, and Wise (2009). These studies attempt to estimate latent variable

models of health similar to our basic specification.6 The fundamental differ-

ence between these studies and ours is that they rely on single indicators of

health such as SRHS (Contoyannis et al. (2004), Halliday (2010) and Heiss,

et al. (2009)) or an inability to work measure (Heiss et al. (2009)), sometimes

combined with a mortality equation. They are therefore based on substan-

tially less information than our approach, are sensitive to the specific measure

used to represent health, and fail to fit the empirical joint distribution of the

5See also Blau and Gilleskie (2001)
6Related literature (Adda, Banks, and von Gaudecker (2009), Adams, Hurd, McFad-

den, Merrill , and Ribeiro (2003), Borsch-Supan, Heiss, and Hurd (2003), Contoyannis,
Jones, and Rice (2004), Halliday (2008)) studies how health and income evolve jointly
using dynamic panel data methods.
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multiple health measures within and across age. By construction, they can-

not distinguish between persistence of latent health and persistence of the

unique health measures they use. Some of their conclusions on persistence

have to be modified once one exploits a broader set of health variables.

Overall, we hope that our paper contributes to what is, in the words of

Halliday (2010), still “very much a fledgling field”by expanding the empirical

basis for dynamic latent health models to include multiple health measures.

We propose a new estimation method and provide estimates of dynamic

models of health that successfully describe how health measures at different

ages are jointly distributed. At the same time, these dynamic models still

maintain a tractable, single-index specification for health.

We begin our exploration in Section 2 by describing the data. In Section

3, we present the static factor model that relates health measures to the

underlying health index. We show estimates of this model in Section 4.

Section 5 presents the dynamic specifications, and Section 6 discusses the

method we use to estimate the dynamic models. In Section 7, we discuss

estimates of the dynamic models, and we conclude in Section 8.

2 Measures of Health in the Health and

Retirement Study (HRS)

The Health and Retirement Study (HRS) is uniquely suited for analyzing the

dynamics of health among the elderly. It contains detailed health measures
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for a panel of individuals who have been followed for up to 16 years. In this

section, we describe the sample and health measures we use in our study.

In particular, we present reduced form results that motivate why we rely on

multiple health measures to study the dynamics of health. These results also

motivate how we specify the dynamics of health in our preferred model.

We argue that the traditional focus on SRHS misses much of the useful

information on health contained in the HRS. Two observations support this

argument; there is a lot of systematic variation in the additional health mea-

sures that SRHS cannot explain and this variation correlates with important

outcomes such as subsequent mortality, labor force participation, and weekly

earnings. We then use principle component analysis (PCA) to show that it is

possible to capture much of the information in the available health measures

using a single-index model of health augmented by a set of factors specific to

the various health measures. In the cross-section, these measurement-specific

components are akin to uncorrelated measurement error. However, dynam-

ically the measurement-specific components correlate across age. Overall,

our descriptive analysis of these measures therefore leads us to formulate

single-index factor models of health in the cross-section that, in our preferred

specification, contain individual measurement-specific random effects.

2.1 The Data

The HRS is a large representative longitudinal survey with both clinical and

self-reported measures of health. The clinical measures are continuous, which
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will allow us to estimate nonparametric distributions of health. The self-

reported measures are categorical variables. Every two years since 1992, the

HRS has surveyed nearly 20,000 respondents representing the US population

aged 50 and older. In order to maintain a representative sample of the

population aged 50+, new birth cohorts are enrolled every 6 years. We base

our study on the nine surveys conducted between 1992 and 2008.7

Our data is based on the RAND HRS data files, the HRS Tracker files

and the physical measure files for the 2004-2008 waves. The RAND files

(version H) are a user-friendly version of the HRS made available by the

RAND corporation. We obtain from it the self-reported health variables,

age, and height. We add three clinical health measures (peak expiratory air

flow, hand grip strength and timed walking speed data) from the 2004-2008

physical measure files. The HRS Tracker files (version 2.0, January 2008)

provide vital statistics based on the National Death Index (NDI).8

Table 1 documents summary statistics for our sample. We use 158,595

observation years obtained from 29,723 individuals. 5,769 individuals report

data for all 9 surveys. The average age in the sample is 67 and 44% of

respondents are male. The NDI covers the period from 1992 to 2004 and

applies to 25,803 individuals. 26% of these individuals had died by 2004 at

7We use data from annual surveys between 1992 and 1996 and the biannual surveys
between 1996 and 2008.

8The mortality data in the tracker files is based on finder files submitted to NCHS in
1995, 2000, 2002, and 2004. Based on the information in the tracker files, we can determine
the vital status and the year and month of death up to 2004.
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an average age just over 78 years old. A final control used in this analysis

is a measure of individual height, which we demeaned by by gender. The

standard deviation in individual height is just over seven centimeters.

The HRS collects a multitude of self-reported health measures and we

chose two from these: an index of large muscle strength (LMI) and SRHS.

SRHS is reported on a five point scale from poor to excellent. The LMI

is derived from variables indicating diffi culties in four tasks: sitting for two

hours; getting up from a chair; stooping, kneeling, or crouching; and push-

ing or pulling a large object.9 In addition to the self-reported health mea-

sures, we use three clinical health measures collected since 2004. Hand grip

strength measures general muscle strength and whether respondents suffer

from arthritis and other conditions in the hand. Hand grip strength has been

shown to be related to general physical and medical status and predicts mor-

tality. The grip strength variable is roughly log normally distributed and we

therefore use the log of hand grip strength in our analysis. The measure of

lung function, peak expiratory air flow, is strongly indicative of obstructive

lung disease. Declines in peak expiratory air flow have been shown to be

related to mortality, as well as to cognitive and physical decline. Finally, the

timed walk, which has only be encollected from individuals over 65, has been

shown to be a highly reliable measure of functional capacity that predicts

many major health outcomes.

9SRHS is available for all waves in the study, whereas the LMI is unavailable for wave
1 and for a subset of the sample in wave 2.
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As documented in Table 1, we find that respondents on average report

diffi culties in 1.3 (out of four) tasks that make up the LMI and report them-

selves to be in good health. The LMI and SRHS indicate that the population

was slightly less healthy after 2004, which is due to the population being

somewhat older during these later years. As is also evident from Table 1, we

have many fewer observations for the clinical health measures than the self-

reported measures. This is because these measures have been collected only

since 2004 and they have been administered only to random subsets of the

sample. For example, the expiratory air flow and log grip strength measures

were collected from approximately 3,000 respondents in 2004 and 7,000 each

in 2006 and 2008. Unfortunately, only a few individuals were administered

the clinical measurements in two adjacent years, which makes them less use-

ful to estimate dynamic models. Finally, the timed walk is only available for

individuals over 65.10 For these reasons, the self-reported measures will be

more influential in our estimation results.

2.2 The Case for Going Beyond SRHS

Just because measures are available does not mean that we should use them.

It is plausible that a summary measure such as SRHS captures most of the

relevant information on health. In that case, using additional health variables

makes the analysis unnecessarily complex. We therefore will show that SRHS

10We use the timed walk to estimate the static measurement model, but we do not
currently use it to estimate the dynamic model.

12



fails to fully capture the systematic variation in the health measures included

in our analysis and that these additional measures provide additional infor-

mation for explaining outcomes such as mortality, work participation, and

earnings.

Table 2 shows two correlation matrices for males in our sample (results for

females are similar and available on request). Panel A shows the correlations

for all five health measures in the data after residualizing on gender, height

of the individual, and a full set of age indicators. All these correlations are

highly statistically significant. The largest is the correlation between the two

self-reported measures - SRHS and the LMI. Generally, a clinical measure

will be more highly correlated with another clinical measure than with a self-

reported measure. Similarly, the two self-reported measures are more highly

correlated with each other than with any of the clinical measures.

Panel B then shows that the additional health measures are correlated

with each other even after residualizing on SRHS. Although the correlations

do decline, they all remain positive and highly significant. Clearly, these

measures are systematically related even after removing the component ex-

plained by SRHS, and they contain additional information about the health

of the individual.

In Table 3 we relate these health measures to meaningful outcomes such

as mortality, whether an individual works, and weekly wages among those

working. In columns 1 and 2, we estimate a hazard model relating mortality
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to SRHS and LMI and test whether the LMI is significant.11 We then consider

regression models of work participation and weekly earnings. We report

results with and without the clinical measures, because the latter are available

for only a small subset of the sample.

The SRHS measure clearly contains a lot of information for both the

mortality and the work decision. For instance, mortality risk for those who

report "very good" or "excellent" health is only about one-fifth of the mortal-

ity risk for those reporting "poor" health. Similarly, work participation rates

and wages are substantially higher among those reporting better health. The

magnitude of the relation between SRHS and these outcomes is large enough

to explain a significant proportion of the data.

The other health measures, however, also explain relevant proportions of

the data. For instance, the partial R-squared associated with the additional

health measures is about one-half to two-thirds as large as the R-squared as-

sociated with SRHS. And, these additional measures are highly statistically

significant explanatory variables for mortality and work, and to a lesser de-

gree wages. Clearly, the full vector of health measures explains much larger

fractions of the variation in outcomes than does SRHS on its own.
11We can not relate mortality to the physical measures, because these are only collected

in the HRS after 2004 and the mortality data are only available up to 2004.
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2.3 Health as a Scalar?

Our approach summarizes how health measures are correlated in the cross-

section using a single health factor. Using the correlations of health measures

of individuals of the same age, we estimate a factor model. This produces

estimates of how the scalar "health" is distributed and how the health mea-

sures are distributed conditional on the health factor. Together these two

components explain the joint distribution of health measures within age.

One might question whether a single-index model can capture the correlation-

structure across health measures observed in the cross-section. To answer

this question we perform a PCA on the correlation matrix. We perform this

analysis separately by 5-year age group and gender and present the results

for the males 65-69 years old in Table 4.12

In PCA, the eigenvalues determine the proportion of the total variation

in the health measures that is explained by the associated orthogonal fac-

tors (principal components).13 The principal components are ordered by the

sizes of their eigenvalues - that is by the amount of variation each explains.

From Table 4, we see that the first principal component explains 38% of the

total variation in the data. Examining the remaining eigenvalues, we find

that these account for a much smaller proportion of the variation and that

they account for roughly equivalent amounts (between 11% and 19%). This

12The results from this age group are similar to those obtained for females and for those
from other age groups and are available from the authors on request.
13Our results are based on the correlation matrix and are thus scale invariant and assign

equal importance to the variation in each measure.
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pattern is consistent with a data structure in which a single factor (health)

explains the cross-correlations across the measures and the remaining varia-

tion is captured by orthogonal, measurement-specific factors.

Concerning the factor loadings, we find that all health measures load on

the first principal component with roughly equal coeffi cients. We interpret

this as evidence that there is indeed a systematic scalar source of variation

that drives much of the variation in health measures and can reasonably be

interpreted as health. There is an interesting pattern among the loadings

on the second principal comp within self-reported health measures that we

already commented on when examining Table 2: some respondents tend

to self-report worse health than seems indicated by their clinical measures.

This results in relatively high agreement between the two self-reported health

measures as well as between the three clinical measures, whereas there is less

agreement between self-reported and clinical measures. A more complete

analysis would require a second factor to capture subjective attitudes toward

health that are not confirmed in the phsyical measures. We find it diffi cult

to interpret the remaining principal components.

Overall, the patterns in the eigenvalues and eigenvectors from PCA sug-

gest that a model with a single health factor can account for much of how

this set of health measures covary across individuals. Given our preference

for parsimony, we refrain from using higher dimensional factor models and

instead concentrate our efforts on a single-factor model.
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2.4 Correlations in Health Measures across Age

The same health measures from different ages are highly correlated. Table

5 shows the pairwise correlations between our health measures within age

as well as the correlations of the health measures with those obtained two

years prior. SRHS has an autocorrelation of 0.66, indicating a significant

amount of persistence. The autocorrelation for LMI is 0.62, and those for

the physical measures are similarly high. At the same time, and as we noted

above, the correlations within age across measures are much smaller - the

largest being 0.44 for the SRHS and LMI measures. The correlations across

age and measures are still smaller. These features of the correlations suggest

a significant systematic component for each measure that persists over time

and is specific to that measure. Our preferred dynamic specification will

therefore include measurement-specific random effects.

In the next two sections, we describe the static model and its estimation

before we turn to the dynamic model.

3 The Static Measurement Model

For each 5-year age group and gender we represent the joint distribution of

self-reported and clinical health measures using a single-factor model. We

refer to this scalar factor as health and denote it by ha, where a stands

for age. The factor model specifies how health is distributed and how the

health measures relate to individual height and age, to the factor ha, and to
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measurement-specific stochastic error. The parameters to be estimated for

each 5-year age group are the parameters entering the distribution of ha and

the parameters of each measurement equation.14

To develop this structure, we need additional notation. Let Ya stand for

an m1-vector of categorical health indicators yj,a and Xa for an m2-vector

of continuous health measures xj,a. The total number of categorical and

continuous measurements ism = m1+m2. Each categorical variable yj,a ∈ Ya

is assumed to reflect an underlying latent index ỹj,a. The categorical variables

are ordered and haveKj segments defined by cutoffs ckj,g. Thus, each yj,a ∈ Ya

is linked to its latent counterpart ỹj,a ∈ Ỹa :

yj,a = Σ
Kj

k=11(ỹj,a ≥ ck−1j,g ) (1)

where 1(·.) is an indicator function taking the value 1 if the condition in

parentheses is true and 0 otherwise. The latent indices ỹj,a and the continuous

measurement variables xj,a are collected in a vector Za.

We then relate the measurements Za to the health factor ha as well as r

additional controls Qa, and a vector of measurement-specific errors εa. The

controls Qa include age (within age group) and height. Height proxies for the

direct effect of physical capacity that is unrelated to health on the clinical

14The youngest age group covers the ages 50—54. The oldest age group covers a longer
interval and includes all respondents aged 85-100. We drop respondents over 100.
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measures such as log grip strength, expiratory airflow, and walking speed.

Za =

(
Xa

Ỹa

)
= αg + Λ′gha + Θ′gQa + εa (2)

Equations (1) and (2) define the measurement model. Here, αg denotes

an m-vector of intercepts, Λg an m-vector of factor loadings, Θg an m-by-r

matrix of regression coeffi cients, and εa an m-vector of independently dis-

tributed measurement errors.15 The parameters to be estimated include

the factor loadings, the intercepts for the continuous measures, the cut-offs

for the categorical measures, the regression coeffi cients, the variances of εa

for the continuous measures, and the parameters that govern the distribu-

tion of the health factor ha.16 All of the parameters in this measurement

model are subscripted by g because we estimate the measurement model

separately for each gender and 5-year age group. Thus, we rely on only

a cross-section of health measures for age group g to identify the "static"

parameters (αg,Λg, Qq, V arg(εa)) and the distribution Fg (ha) .

Besides the distribution Fg (·) of the latent health variable ha, we need to

identify the parameters (αg,Λg, Qg) and the vector of the variances of εa.17

Standard factor analytic results imply that, assuming that we have three

or more measurement variables, we can identify these parameters up to two

15The assumption of independence is stronger than the uncorrelatedness assumption
typical in factor analysis. It is required to obtain identification of the distribution of ha
without parameteric assumptions.
16For the ordered categorical measures, the usual normalizations imply that the intercept

is 0 and the variance of the measurement error is 1.
17We provide a more complete identification argument in Appendix 1.
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normalizations, one for the scale and one for the location of the distribution

of the latent health variable. We normalize the intercept and the factor

loading of the log grip strength variable.

Normalizing the intercept to 0 and the coeffi cient on the ha to 1 in the

measurement equation for log grip strength implies that health is measured

in units of log grip strength. That is, a one-unit increase in health implies

an increase in expected log grip strength by one unit. Further, the average

of health conditional on age equals the average log grip strength for that

age. To the extent that the log grip strength is an objective, interpretable

measure of health, we can use it to compare the level of health across ages.

However, grip strength itself is diffi cult to interpret in terms of outcomes that

individuals care about. Therefore, we will use the estimates of the mortality

model obtained in Section 6 to renormalize the health factor and describe

the distribution of health in units of predicted mortality.

A second set of normalizations accounts for the fact that the self-reported

measures are ordinal, categorical variables without scale or location. We nor-

malize the intercepts and the error variances of the measurement equations

dealing with categorical variables to 0 and 1 respectively.

As we show in Appendix 1, our approach has the major advantage that we

can nonparametrically identify how health is distributed. This result relies

on having more than one continuous measures of health, such as the log grip

strength or the expiratory air flow measure. In practice, we need to impose

some parametric functional form. We assume that the latent health variable
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is distributed as a mixture of two normal random variables with different

means and variances:

Fg(ha) = pg ∗N
(
µ1,g + β1,ga, σ

2
1,g

)
+ (1− pg)N

(
µ2,g + β2,ga, σ

2
2,g

)
(3)

The means of the component normal distributions depend linearly on

age. The distribution of health conditional on age therefore contains seven

parameters. These are the mixture probability pg as well as the three pa-

rameters that govern each of the mixture distributions. Mixtures of normal

distributions are very flexible and can accommodate skewness, thick tails,

and bimodalities that cannot exist in a single normally distributed variable.

4 Estimating the Static Measurement Model

To estimate the static model, we pool all observations in the HRS from the

same age group and gender. We define eight age groups ranging from 50-54 to

85+. For each combination of gender and age, we estimate the specification

described in Section 3 using Mplus. We have searched intensively over the

parameter space to find global maxima. Mplus provides us with asymptotic

standard errors, which we report in this section. When we combine the static

and the dynamic models, we bootstrap the estimation procedure to obtain

consistent standard errors for all the model parameters.

Depending on the age group, the measurement model contains either 25
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or 29 parameters for a total of 440 parameters. These are too many to discuss

in this paper and we therefore present estimates for males and females from 3

age groups (50-54, 65-69, 80-84) only. The estimation results from the other

age groups are comparable and available on request. Table 6 reports point

estimates for the parameters in the measurement model (2).

Table 6

Across all age groups, the estimated parameters are qualitatively similar

even if they sometimes differ in magnitude. For instance, the factor loading

for SRHS is typically about one-third larger than that for LMI and about 4-7

times the size of the (normalized) loading on the log grip strength variable.

The loadings on the air flow and the walking speed measures are by contrast

1-2 times the size of the loading on the log grip strength variable. Similarly,

the error variances are quite similar across age groups. Generally, the loadings

and the error variances are precisely estimated.

We consider next the regression coeffi cients on age for the self-reported

health measures. These age coeffi cients are based only on how health re-

sponses vary with age within age group relative to changes in the actual

health factor. The health factor itself also depends on age, and we present

estimates of these associations below. The changes in the health factor with

age (within age group)18 are driven by the average decline in clinical mea-

18The changes in the health factor across age groups (not across age within age group)
reflect the average decline in the normalized health measure, that is, the log grip strength
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sures. The regression coeffi cients on age for the self-reported health measures

represent average changes in self-reported health with age that are not also

reflected in changes in the clinical measures. Positive coeffi cients on age such

as those observed in the data signify that individuals report better health as

they age than is indicated by the physical capabilities reflected in the clinical

measures. This pattern suggests that respondent self-reports of health are at

least partially informed by comparisions of their own health with the health

of others of the same age.

The regression coeffi cients on height are positive for the clinical measures,

but less so for the self-reported measures. For the LMI, we find either a zero

coeffi cient or a negative relation with height. For SRHS, we find a positive

relation with height. However, comparing the regression coeffi cient on height

with the factor loading for SRHS, we find that the relation between height

and SRHS is much weaker than that between the health factor and SRHS.

For the clinical measures, we find that height has a strong impact, especially

on the grip strength variable, suggesting that taller individuals are generally

stronger. By controlling for height in the measurement model, we remove

any long-run correlations between height and health. It is not clear that this

is the appropriate specification, because height itself may be correlated with

health. Nevertheless, to the extent that height is fixed (we measure height as

the maximum height reported in the panel and it is thus fixed across age), we

believe that the dynamic specifications estimated below will be unaffected.

measure.
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In Table 7, we show how the measurement model fits the data using

moments obtained from 50-54 year old females. Clearly, the model fits the

joint distribution of LMI and SRHS well. We have only the log grip strength

variable and the expiratory air flow variable for the years 2004 and 2008,

and only for a subset of observations during those years, so there are far

fewer observations with both variables (N=842 vs. N=11,254). This implies

that the parameter estimates of the static model will primarily be driven by

the self-reported health measures. Nevertheless, we also capture most of the

joint variation in the clinical measures. We interpret these results as evidence

that the static measurement model in fact captures the variation in health

measures within an age group very well.

Table 7

Figure 1 shows how average observed and fitted health measures as well as

the health factor vary with age.

Figure 1

The model fits the declines in the averages of the various health measures

well. By construction, the decline in the health factor mirrors the decline in

log grip strength closely.

We consider now how the health factor is distributed. For this, recall that

the measurement model is normalized against the log grip strength measure.
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Consequently, a unit change in the health factor corresponds to a unit change

in the expected log grip strength.19 Thus, the distribution in the health factor

is meaningful to the extent that one can interpret the distribution of expected

grip strength. We acknowledge that grip strength itself is not a particularly

interesting outcome. We will therefore revisit the distribution of health after

we have estimated the mortality model and will then express health in terms

of predicted mortality rates.

Nevertheless, it is of interest to examine the distribution of health even

when normalized against the log grip strength variable because it informs us

of asymmetries in the distribution of health and whether it is necessary to

account for them. The distribution of health is governed by seven parame-

ters: the variance, the intercept, and age-coeffi cient for the mean of the two

mixture distributions in addition to the weight placed on each of the compo-

nent distributions. Table 8 presents these estimates for the same three age

groups and both genders. The parameters themselves are diffi cult to inter-

pret, so we also display the means, standard deviation, and skew. We plot

the estimated densities in Figure 2.

Table 8

Figure 2

19The grip strength variable itself has been standardized to have a mean of 0 and a
standard deviation of 1 across the entire population.
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Mean health according to this health factor declines with age and is lower

for females than for males. This gender difference reflects that males are

generally stronger physically than females. We believe that these gender

differences should not be interpreted as reflecting real health differences -

they underscore the need to separately estimate the health models for males

and females.

Health is not normally distributed, but characterized by left skew. This

skew is stronger for the younger population, but we find significant deviations

from normality even at older ages. Further, we find that health among males

is skewed more heavily to the left. Our finding that the distribution of health

is non-normal stands in contrast to the normality assumptions standard in

the literature on the dynamics of health (e.g. Halliday (2010) and Heiss et

al. (2009)).

In summary, we find that our health model fits the data in the age-

conditional cross-sections well and that the underlying distribution of health

is not normal. In addition, the measurement model (2) delivers an estimate of

the conditional distribution of measures of health that we require to estimate

the dynamic model.
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5 The Dynamics of Health

We estimate three dynamic models of health. In all three the health scalar

ha follows a first-order autoregressive process with drift:

ha+1 = µg + ρgha + υa (4)

The parameters that govern this annual process are the constant µg, the

autoregressive parameter ρg, and the variance of the innovation σ
2
υ,g. The

innovation υa captures idiosyncratic shocks to individuals’health and is as-

sumed to be normally distributed. The parameters are indexed by g, which

denotes the 5-year age group of the individual in year a. This allows the

dynamic process governing health to change with age.20

To start the random process (4) , we require a distribution F (h0) that

describes how health is distributed in the initial period. We use our esti-

mate of how health is distributed among 50-54 year old males and females,

respectively. This distribution is described in Table 7 and Figure 2 above.

Our basic dynamic specification consists of this initial distribution to-

gether with the dynamic equation (4) . By combining this basic specifcation

with the measurement model (2) we obtain an implied joint distribution of

health measures across time. This joint distribution depends on the dynamic

parameters
(
µg, ρg, σ

2
v,g

)
and on the parameters of the measurement model.

20In principle, we could allow the parameters to vary for each age of the individuals,
but limited sample size forces us to group individuals into 5-year age groups.
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Our second model augments the basic specification with a mortality equa-

tion:

Pr(sa = 1) = Φ (α0,g + α1,gha) (5)

where sa is an indicator for whether an individual survives to age a+1 condi-

tional on being alive at age a, and Φ (·) denotes the standard normal cumu-

lative distribution function. Again, we allow the parameters to vary by age

group. Estimating the dynamic model now means estimating
(
µg, ρg, σ

2
v,g

)
and (α0,g, α1,g) for all age groups.

Our third model is motivated by the correlation patterns documented in

Table 5. The autocorrelations within health measures across age are much

higher than the correlations observed between health measures within or

across age. We assume that the measurement error εma pertaining to the

measure m at age a is composed of an age-constant random effect χm and

an age-specific measurement error ωma .
21

εma = χm + ωma (6)

We assume that χm is normally distributed with variance σ2χ,m and is

uncorrelated with (i) the health factor ha, (ii) all other random effects χk 6=m

and (iii) all age-specific measurement errors ωka. Furthermore, we assume that

the measurement error ωma is normally distributed with a variance σ
2
ω,m,g that

is allowed to differ across age groups g. Estimating the model with random

21These heterogeneous εma,i are collected in the random vector εa in (2).
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effects requires estimating an additional four age-invariant parameters σ2χ,m

that govern the variance of the random effects.22

We will now describe the general method we use to estimate our three

dynamic models.

6 Estimating the Dynamic Model

In this section we describe how we estimate the parameters of the dynamic

process. Our general approach combines a separately estimated comprehen-

sive measurement model with the method of simulated moments.

6.1 A Simulated Method of Moments Approach to Es-

timating the Dynamic Latent Health Process

We propose a simulation-based algorithm that minimizes the distance be-

tween moments obtained from simulated health measurement data and mo-

ments of the empirical distribution of measures. Let Z̃ denote a simu-

lated panel data-set containing measures of health for individuals at dif-

ferent ages. On the basis of Z̃ we can compute simulated moments M̃ (θ)

that depend on the parameter vector θ governing the dynamic model of

health. We construct the same moments from the observed data and de-

note these M . Our estimator then chooses θ̂ to minimize the distance
22The variances of the age-specific measurement error terms do not need to be estimated

as they are determined by the variances of the random effects and the error terms estimated
for static model (2) above.
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D(M − M̃ (θ)) =
(
M − M̃ (θ)

)′
W
(
M − M̃ (θ)

)
, where W is an appro-

priately chosen weighting matrix.

The contents of θ depend on the model that is estimated. For the most

basic model, the parameter vector θ =
{
µg, ρg, σ

2
υ,g

}G
g=0

comprises 24 parame-

ters. When we correct for mortality, θ also contains the mortality parameters

for each age group: θ =
{
µg, ρg, σ

2
υ,g, α0,g, α1,g

}G
g=0

. In that case θ has dimen-

sion 40. Finally, the random effects model depends on a parameter vector θ

that consists of 44 parameters:
{{
µg, ρg, σ

2
υ,g, α0,g, α1,g

}G
g=0

,
{
σ2χ,m

}M
m=1

}
.

At the core of the estimator is an algorithm that lets us construct M̃ (θ) .

Before we explain this algorithm, note that we have separately estimated

how the latent health variable maps into the health measures Za (as shown in

Sections 3 and 4). We can thus treat this mapping as known. Furthermore,

note that the static measurement model estimated at age 50 provides an

estimate of the initial distribution F (h0) of health for the starting age.

The algorithm to construct the simulated moments of measurements

M̃ (θ1) implied by any parameter realization θ1 consists of the following steps:

Step 1: Generate draws of initial health h̃0 for a large simulated sample of

individuals by drawing from the estimated distribution F0 (·) of the

latent health variable at the initial age a = 0.

Step 2: If the dynamic model contains random effects, use θ1 to generate {χm}
M
m=1

for each individual in the simulated sample.

Step 3: Use the dynamic model with the parameters θ1 to draw h̃a+1|h̃a for
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each individual. This generates a simulated panel of health histories.

Step 4: Use the implied survival probability Φ
(
α0,g + α1,gh̃a

)
to simulate the

mortality process and generate a sample of survivors.

Step 5: For each age in the panel, use the estimates from the static measure-

ment model together with the sample of random effects χm to draw

z̃a|h̃a, χm for the sample of survivors.

This leaves us with a panel of measurements {z̃a}Aa=0 from which we can

generate M̃ (θ1) and for which we can generate the distance D(M − M̃ (θ1)).

It should be clear that this algorithm can be implemented for more complex

dynamic processes than we have shown here. The main constraints that

prevent us from estimating richer dynamic models are computational.

6.2 Implementing the Simulated Moments Algorithm

In order to implement the above algorithm we must choose the appropriate

set of moments M(θ). By construction, the measurement model matches the

cross-sectional distribution of the health measures in a given age group. The

moments that are available to estimate the dynamic models are therefore

moments from the joint distribution of health measures across time. The

HRS imposes a further restriction in that observations are spaced two years

apart. We therefore match the following moments for each age group:

1. For each continuous clinical measure we match
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(a) average change in the measure from age a to a+ 2. (2 moments)

(b) variances in the clinical measures in a+ 2 (2 moments).

(c) The covariances of the measures (both within and across mea-

sures) between a and a+2 (4 moments).23

2. For each categorical self-reported measure, we match the entire in-

tertemporal transition matrix. Both LMI and SRHS have five support

points, so there are 25 transition probabilities. The transition probabil-

ities within each row of the transition matrix must sum to 1, implying

five restrictions on the transition matrix. This means that each of the

ordinal categorical variables contributes 20 moments and we have an

additional 40 moments by going across categories (80 moments).

3. We also use the expected value of each continuous variable in a+2 con-

ditional on the support of each categorical variable in a (20 moments).

4. To identify the survival process, we also match

(a) mean of the clinical measures in a, conditional on dying before

period a+ 2 (two moments)

(b) marginal distribution for each of the self-reported measures, also

conditional on dying before period a+ 2 (eight moments)

(c) unconditional mortality rate (one moment)

23The true covariance of log grip strength in period a and peak expiratory air flow in
period a+2 is the same as the covariance of these variables in the opposite periods, but
because these moments can be different in the data, we match both.
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For each age group, we thus have a total of 119 moments to estimate

θ. The estimated parameters are asymptotically consistent regardless of the

weighting matrix chosen. However, in a finite sample, the choice of the

weighting matrix will result in different estimates. We use a grid search to

find good starting values and thus need to compare the minimized criterion

function across different starting values to ensure that we find the global

minimum. This precludes using the conventional two-step optimal weighting

scheme, because in this scheme the minimized criterion depends on the weight

matrix, which is itself a function of the initial parameters. Instead, we use

the inverse of the variance matrix of the observed moments, which places

extra weight on precisely estimated moments.

We bootstrap the standard errors at the individual level using 100 repli-

cations. We estimate both the measurement model and the dynamic model

within each bootstrap replication and thus obtain standard errors that ac-

count for the estimation error in the measurement model.

7 Estimates of the Dynamic Model

7.1 The Fit of the Model

In Tables 9, 10, and 11, we present the parameters of the three dynamic

models of health. We discuss what these parameters mean in more detail be-

low. At this point, we simply consider how well these models fit the dynamic

aspects of the data.
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We compare the observed and the fitted correlation matrices of the four

health measures used to estimate the dynamic models: log grip strength,

expiratory air flow, SRHS, and LMI. In Table 12, we show for women between

65 and 69 how the observed and the predicted correlations compare.24

As we discussed in Section 2, health measures correlate highly across age

within but not across measures, which motivated the random effects model.

Unsurprisingly, the basic specification and the mortality-corrected model do

not capture these high autocorrelations specific to individual measures. In-

stead, we find they obtain very similar correlations across age regardless of

whether we consider the correlation within the same measure or across dif-

ferent measures. For example, the basic and the mortality model predict

that the autocorrelation of the expiratory air flow measure is approximately

0.17. These models find a similar correlation of the expiratory air flow mea-

sure with the log grip strength measure across age and a larger correlation

with the two self-reported measures. These findings are clearly at odds with

the empirical facts. By contrast, the random effects model fits the data

quite well. It allows both for the high autocorrelations within health mea-

sures and for the lower correlations across health measures and time. The

overall dynamic fit of the model is thus substantially improved by including

measurement-specific random effects in the error component of the models.

24We get a similar fit for the other groups.
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7.2 The Units of Health: More on the Distribution of

Health

Because of an arbitrary normalization, we measure health in units of log grip

strength. Any linear transformation of the health factor is equally capable of

capturing the correlation in health measures. Furthermore, once we describe

the health dynamics with a factor h that follows some dynamic model, we are

free to take an arbitrary monotone transformation g(h) to assign meaning

to the latent variable health. Rather than measuring health in units of log

grip strength, we use our estimate of the mortality model (eq. 5) to measure

health in predicted mortality rates. Transforming the health factor h into

mortality units is useful because mortality units are a more familiar outcome

and because it is easier to attach value to mortality risk.

The first panel of Table 13 reproduces the health distribution based on

the log grip strength normalization, previously shown in Table 7 and Figure

2. The second and third panels display the distribution of health in mor-

tality units. The second panel is based on expected mortality itself and is

measured in annual percent mortality risk, whereas the third panel shows

the distribution of mortality risk relative to the average risk for each age

and gender. In Figure 3, we show the distribution of health as measured in

predicted mortality.

Both the average mortality and the variation in predicted mortality risk in

the population rise sharply with age. The average mortality risk for females
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aged 80-84 is for instance about five times the risk for women aged 50-54,

whereas the standard deviation in mortality risk for the older group exceeds

that of younger women by a factor of 6. At the same time, the health

distribution displays right skew for all ages, so there is a sizeable minority that

has dramatically higher risk in all age groups. The skew is somewhat smaller

for the older group, but nevertheless the increased dispersion in mortality

risk means that there are large differences in predicted mortality in this

population at all ages. For example, the 90-10 ratio in predicted mortality

is between 1.75 and 2 for all age and gender groups.

As Table 13 and Figure 3 reveal, the health distribution is skewed, leading

the average predicted mortality rate to exceed that at the median by only

between 5% and 10% depending on the age and gender group. We judge

this degree of skew to be relatively small compared to the overall variation

in health observed in this data. There is substantial dispersion in health as

measured by expected mortality rates within age and gender group.

7.3 The Persistence and Volatility of Health

How persistent are health differences between individuals across age? Can the

sick and sickly expect to recover over time or are their health diffi culties likely

to remain with them? The answers to these questions differ across the three

specifications described above. In particular, we find that the two models

that do not account for the measurement-specific random effects predict more

persistence and significantly less volatility in health than does our preferred
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specification that accounts for the persistence specific to each measurement.

Our results suggest that dynamic models that do not allow for measurement-

specific persistent differences will attribute much of the persistence in health

measures observed across individuals to general health, thus overestimating

the stability of health differences in the population.

We consider first the estimates of the basic specification (Table 9) as well

as the mortality-corrected specification (Table 10).25 For both models, the

parameter estimates display a considerable degree of persistence. The AR-1

parameter is typically close to 1, suggesting that health closely resembles a

random walk. For older men do we find AR-1 coeffi cients that are below 1,

but only for the oldest group can we reject a random walk. Overall, these

estimates suggest that individuals do not recover from health diffi culties.26

Instead of observing regression to the mean in health, existing health dif-

ferences in the population seem to persist as individuals age. The volatility

estimated for these specifications is likewise small. Annually, the standard

deviation in the innovations is typically below one-tenth and sometimes be-

low one-hundredth of the overall standard deviation in health observed in the

population (see Table 8). These estimates of the basic specification thus sug-

25In each table, the last column summarizes the average decline in health implied by the
parameters. This decline is calculated by taking E [ha+1]−E [ha] = E [µ+ ρha + εa+1]−
E [ha] = µ+(ρ− 1)E [ha] and depends on the two parameters (µ, ρ) as well as the observed
mean health for each age: E [ha] . For the mortality model, this decline is calculated
without conditioning on survival - it shows what would happen to average health in the
population if individuals were not subject to mortality.
26This is true for the frequency that the HRS is collected: every two years. It is possible

that there is more significant regression to the mean at much shorter frequencies. The
HRS is poorly suited for examining health dynamics at very short frequencies.
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gest that health is a very stable process and that health differences between

individuals are very persistent across ages.

The estimates of the random effects model in Table 11, however, lead

us to revise this conclusion. The auto-regressive parameters for women are

uniformly smaller than those reported in Table 10. Among older women and

especially men, the point estimate of ρ suggests a strong tendency for health

to regress back to the mean. Health is also much more volatile than previously

thought. Almost uniformly, the estimated variances in innovations from the

random effects model exceed those obtained in the basic specifications: some

of them are much greater, particularly for older individuals.

Overall, there is still a substantial degree of persistence in the population,

but compared to the estimates in Tables 9 and 10, the more complete model

allows for a significant degree of regression to the mean among men and older

women. And, the observed volatility now implies that a nontrivial fraction

of the population experiences larger declines in health than the remainder of

the population. This is particularly true among the elderly.

8 Conclusion

In this paper, we have proposed a new simulation-based method of estimat-

ing how health evolves as individuals age. Our approach splits the problem

into two parts. The first is a static measurement stage that recovers for each

age how latent health (conditional on controls) is distributed and delivers
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age-specific estimates of how latent health maps into observed health mea-

surements. The second stage focuses on the dynamics. Using the estimates of

the measurement model, we can generate simulated joint distributions of the

manifest measurement variables implied by our model of dynamic health and

our estimated measurement model. The estimation proceeds by choosing pa-

rameters of the dynamic model that minimize differences between cross-age

moments in the simulated and observed distributions of measures.

To demonstrate our method, we have estimated a measurement model

using five health measures available in the HRS and, using this measurement

model, estimated three different dynamic models of health. Our estimates of

the static measurement model allow us to consider nonparametric estimates

of the distribution of health. Using expected mortality to set the scale of

the health distribution, we find that health is non-normally distributed and

displays significant left skew, reflecting the observation that a significant frac-

tion in the population registers low values on multiple or all health measures.

We also find that the variance in expected mortality increases significantly

alongside the average mortality rate as individuals age.

Our simplest dynamic health model displays a very high degree of persis-

tence. According to this model, health evolves as a random walk with very

little volatility. When we correct for endogenous mortality selection, health

is still very persistence and follows a dynamic process that closely resembles

a random walk. However, these two models fail to adequately describe the

dynamics of health measures we observed in the data. In particular, these
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two models are incapable of reproducing the high degree of autocorrelation

in specific health measures we observed in the data. To account for this,

we allow for measurement-specific random effects and find that this substan-

tially improves model fit. When we allow for random effects specific to the

measures, health displays a greater tendency to regress to the mean and is

substantially more volatile across age.

9 Appendix: Identification of the Basic Model

In this appendix, we discuss how the static measurement model and the basic

dynamic model are identified.27 The parameters that need to be identified

are the dynamic parameters
(
µa, ρa, σ

2
υ,a

)
, the initial distribution of health

F (h0) , and the parameters from the measurement model
(
αa,Λa, c

k−1
j,a

)
.We

will show that these parameters are identified up to a normalization on the

intercept and factor loading for one of the continuous measurement equa-

tions, as well as the standard normalizations on variances and intercepts of

categorical measurement equations. We assume that we have access to at

least two continuous measurement variables and three additional continuous

or categorical measurement variables.

First, we appeal to standard factor analytic arguments and assert that

with three continuous and categorical measurement variables, we can identify

27To simplify the notation, we omit the direct dependence of the measurement equa-
tions on age and on height. Extending the identification to allow for control variables is
unproblematic.
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the parameter vectors (αa, λa) and the variances of εa up to a normalization

of one intercept and one factor loading. We will impose these normalizations

on the same measurement equation at all ages.

We did not restrict the distribution of F (ha) and we therefore need to

show, using Kotlarski’s Theorem, that F (ha) can be nonparameterically iden-

tified using two continuous measurements only. Use the first and second con-

tinuous measurement for this identification argument: x1,a and x2,a.We have

normalized the factor loading and intercept on the first and thus have

x1,a = ha + ε1,a

x2,a = α2,a + λ2,aha + ε2,a

Because (α2, λ2) are identified, we can write:

x1,a = ha + ε1,a

x2,a − α2,a
λ2,a

= ha +
ε2,a
λ2,a

and can treat the left-hand side of both of these equations as observed. Kot-

larski’s Theorem implies that if
(
ha, ε1,a,

ε2,a
λ2,a

)
are jointly independent and

E [ε1,a] = E
[
ε2,a
λ2,a

]
= 0, then the marginal distribution of h can be identified

from the joint distribution of (x1,a, x2,a) . Therefore, F (ha) and the parame-

ters of the measurement equations are identified.

We have yet to discuss the identification of the parameters of the dynamic
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equation (4) . For this purpose, we will restrict attention to two adjacent ages

(a, a+ 1) . First, note that we can identify the parameters {µa} using the

marginal distributions of health ha directly:

µ0 = E [h0]

E [ha+1] = µa + ρaE [ha]

Now, from equation (4) we get:

E [ha+1|Za] = µa + ρaE [ha|Za] + E [εa+1|Za]

=⇒ ρa =
E [ha+1|Za]− µa

E [ha|Za]

E [ha|Za] can be directly obtained using the parameter estimates from

the measurement model. However, we lack direct estimates of E [ha+1|Za] .28

However, we have the following:

E [Za+1|Za] = E [αa+1 + Λa+1ha+1 + εa+1|Za]

= αa+1 + Λa+1E [ha+1|Za]

⇔ E [ha+1|Za] =
(
Λ′a+1Λa+1

)−1
Λ′a+1 (E [Za+1|Za]− αa+1)

where the right-hand side can be obtained using the estimated factor loading

matrices and the data. Therefore ρa is identified.

28Note that E [ha+1|Za] 6= E [E [ha+1|Za+1] |Za] .
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To identify σ2a, consider the following expression:

V ar(ha+1|Za) = V (µa + ρaha + εa+1|Za)

= ρ2aV (ha|Za) + V (εa+1|Za)

=⇒ σ2a = V ar(ha+1|Za)− ρ2aV (ha|Za)

Again, we obtain V (ha|Za) directly from the measurement model and we

need to concern ourselves only with finding V ar(ha+1|Za). For this purpose,

we again use the joint distribution of the measurement equations.

V (Za+1|Za) = V (αa+1 + Λa+1ha+1 + εa+1|Za) = Λa+1V (ha+1|Za) Λ′a+1 + V (εa+1|Za)

= Λa+1V (ha+1|Za) Λ′a+1 + V (εa+1)

⇔ V (ha+1|Za) =
(
Λ′a+1Λa+1

)−1
Λ′a+1 (V (Za+1|Za)− V (εa+1)) Λa+1

(
Λ′a+1Λa+1

)−1
where again the right-hand side is observed or estimable from the static

model.
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Figure 1: Mean Female Health Measures by Age
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Figure 2: Estimated Health Factor Densities



Table 1: Summary Statistics 

Mean Std Dev Mean Std Dev
Self-rated Health Status 3.14 1.16 3.09 1.13
Large Muscle Index 3.74 1.32 3.66 1.33
Exp. Air Flow na na 0.00 1.00
Log Grip Strength na na 0.00 1.00
Log Walking Speed na na 0.00 1.00
Age 66.95 10.61 68.58 10.57
Height 0.00 0.07 0.03 0.07
Fraction: Male 0.44 0.44
Observations

`

Reported are summary statistics for the full HRS sample as well as for the 2004 - 2008 years 
only. The objective health measures are available during the 2004-2008 period and for 
subsamples of the total sample. We have recoded the Large Muscle Index and the log speed 
variable so that higher values represent better health. The Large Muscle Index is coded as 5 
minus the number of (up to) 4 activities for which a respondent reported difficulties.  The Self-
rated Health Status takes integer values running from 1 to 5. The objective measures are 
standardized to mean zero and standard deviation 1 in the full sample. The height of individuals is 
standardized within gender to have a mean of zero and is measured in meters. The physical 
measures are available for only about 17,000 respondent years for the grip strength and 
expiratory air flow measure and about 10,000 for the walking speed measure. The latter variable 
is only available for respondents aged 65 or more. 

Full Sample: 1992-2008 Only 2004-2008

158,595 53,902



Self-Rated 
Health 
Status

Large 
Muscle 
Index

Peak 
Expiratory 
Air Flow

Log Grip 
Strength

Log Walking 
Speed

Self-Rated 
Health Status

1

Large Muscle 
Index

0.44 1

Peak 
Expiratory Air 
Flow

0.28 0.18 1

Log Grip 
Strength

0.19 0.19 0.27 1

Log Walking 
Speed

0.24 0.21 0.27 0.23 1

Self-Rated 
Health 
Status

Large 
Muscle 
Index

Peak 
Expiratory 
Air Flow

Log Grip 
Strength

Log Walking 
Speed

Self-Rated 
Health Status

na

Large Muscle 
Index

na 1

Peak 
Expiratory Air 
Flow

na 0.06 1

Log Grip 
Strength

na 0.11 0.23 1

Log Walking 
Speed

na 0.12 0.22 0.19 1

`

Panel A: Health Measures Residualized on Gender, Height, and Age. 

Table 2: Standard Dichotomous Health Measures Capture Only Part of 
Information in Health Measures

Panel B: Health Measures Residualized on SHRS, Gender, Height, and Age. 

Notes: Reported are correlations between the residualized health measures. In Panel A, the health 
measures have been residualized using a regression of the various health variables on height, 
gender and a full set of age dummies. In Panel B, the health measures have been residualized using 
the same set of controls as above and also the SRHS measure. All of the reported correlations are 
highly statistically significant with p-values of less than 0.0001.



Table 3 Health Measures, Mortality, and Labor Market Outcomes1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Female Male

SRHS
Fair 0.52** 0.48** 0.13** 0.13** 0.17** 0.13** 36.15 -25 144.56 85.2

[0.03] [0.03] [0.01] [0.02] [0.01] [0.03] [58.03] [338.86] [122.89] [217.20]
Good 0.29** 0.27** 0.24** 0.23** 0.28** 0.23** 76.43 126.43 214.01+ 157.54

[0.02] [0.02] [0.01] [0.02] [0.01] [0.02] [56.11] [332.64] [117.94] [209.52]
Very Good 0.19** 0.18** 0.29** 0.27** 0.33** 0.26** 175.20** 187.47 402.52** 235.87

[0.02] [0.02] [0.01] [0.02] [0.01] [0.03] [56.36] [334.13] [118.44] [212.24]
Excellent 0.18** 0.15** 0.31** 0.29** 0.37** 0.32** 231.93** 410.79 461.10** 360.61

[0.02] [0.02] [0.01] [0.03] [0.01] [0.03] [57.93] [342.52] [121.83] [221.15]

LMI
1 0.98 0.97 0.09** 0.08** 0.13** 0.13** 72.83+ 216.66 95.6 30.94

[0.07] [0.08] [0.01] [0.02] [0.01] [0.03] [42.97] [203.02] [138.04] [237.23]
2 0.85* 0.80* 0.13** 0.11** 0.19** 0.15** 60.09 21.36 73.26 -42.51

[0.07] [0.07] [0.01] [0.02] [0.01] [0.03] [40.59] [193.72] [129.14] [223.53]
3 0.83* 0.81* 0.15** 0.10** 0.22** 0.15** 69.49+ 84.92 169.05 116.3

[0.07] [0.07] [0.01] [0.02] [0.01] [0.03] [39.78] [191.28] [125.89] [218.68]
4 0.69** 0.74** 0.17** 0.14** 0.24** 0.20** 124.61** 149.6 325.12** 309.44

[0.06] [0.06] [0.01] [0.02] [0.01] [0.03] [38.68] [185.32] [123.06] [213.10]
0.03** 0.02* 33.1 89.82
[0.01] [0.01] [66.91] [60.93]
0.03** 0.03** 114.28+ 87.44*
[0.01] [0.01] [64.18] [36.57]

All Measures
810.15     
(8)**

900.29     
(8)**

900.29     
(8,72100)**

58.26      
(10,7829)**

815.81      
(8,57457)**

52.28      
(10,5701)**

17.68     
(8,25222)**

2.32      
(10,2639)**

14.76      
(8,24787)**

5.25      
(10,2263)**

SRHS
545.92     
(4)**

613.86     
(4)**

614.40     
(4,72100)**

50.50      
(4,7829)**

671.92      
(4,57457)**

39.30      
(4,5701)**

19.57     
(4,25222)**

2.53      
(4,2639)**

12.29      
(4,24787)**

1.73      
(4,2263)

Other 

Measures2
23.56      
(4)**

20.48      
(4)**

196.16     
(4,72100)**

17.17      
(6,7829)**

243.80      
(4,57457)**

18.50      
(6,5701)**

4.74      
(4,25222)**

1.14      
(6,2639)

8.62      
(4,24787)**

4.58      
(6,2263)**

Observations 53,956 42,369 72,138 7,869 57,495 5,741 25,260 2,679 24,825 2,303

2 Other Measures refers to the Large Muscle Index, log grip strength, and expiratory air flow when included in the regression.

Female Male

Test Statistics (Degrees of Freedom) on Exclusion Tests (Chi-squares for Mortality, F-tests for Work and Wages)

Log Grip 
Strength

Exp. Air Flow

1 Columns 1 and 2 display hazard rates relating mortality up to 2004 to Health Measures estimated with a log-linear correction for the age of individuals. Columns 3-10 report OLS 
estimates. The dependent variables in column 3-6 are an indicator for working and in column 7-10 the weekly wage conditional on working for  pay. Standard errors are reported 
below the point estimates in brackets. Stars denote significance levels: ** p<0.01, * p<0.05, + p<0.1.

Mortality Work Weekly Wages
Female Male



Component: (1) (2) (3) (4) (5)

Eigenvalue 1.91 0.97 0.83 0.72 0.57

Proportion of 
Variation

0.38 0.19 0.17 0.14 0.11

Current / 
Preceding 
Eigenvalue

0.51 0.91 0.87 0.79

Large Muscle 
Index

0.46 -0.59 0 0.3 0.6

Self-rated Health 
Status

0.51 -0.44 0.12 -0.24 -0.7

Peak Expiratory 
Airflow

0.47 0.35 -0.16 -0.72 0.34

Log Grip 
Strength

0.42 0.37 -0.63 0.49 -0.21

Log Walking 
Speed

0.38 0.45 0.75 0.31 0.01

`

Table 4 Principal Component Analysis of Health Measures for High School 
Graduates Age 65-69

Eigenvector

Reported are the eigenvalues and the eigenvectors of the correlation matrix of the health measures for 
male high school graduates between age 65 and 69. Below the eigenvalues, the share in the overall 
variation is reported and below this the ratio of the eigenvalue of the current principal component with 
the preceding one. The principal component analysis is based on 894 respondents with observed 
values for all five health measures. 



Table 5 The Correlations in Health Measures within and across Age (Males)
Large 

Muscle 
Index

Self-rated 
Health 
Status

Peak 
Expiratory 

Airflow

Log Grip 
Strength

Log 
Walking 
Speed

Large 
Muscle 
Index

1

Self-rated 
Health 
Status

0.44 1

Age
Peak 
Expiratory 
Airflow

0.18 0.28 1

Log Grip 
Strength

0.19 0.19 0.27 1

Log 
Walking 
Speed

0.21 0.24 0.27 0.23 1

Large 
Muscle 
Index

0.62 0.41 0.20 0.16 0.25

Self-rated 
Health 
Status

0.41 0.66 0.27 0.13 0.21

Age-2
Peak 
Expiratory 
Airflow

0.18 0.30 0.62 0.18 0.45

Log Grip 
Strength

0.15 0.18 -0.00 0.74 0.05

Log 
Walking 
Speed

0.15 0.12 0.12 0.08 0.49

`

Reported are pairwise correlations in residualized health measures within age and between age and age-
2. The measures are residualized using height and a full set of age dummies. Note that the correlations 
across age within clinical measures are often based on few measures due to fact that only subsamples 
of the HRS waves in more recent years include clinical measures. For example the correlations of the log 
walking speed variables with the other clinical variables are based only on 19 and 23 observations, 
respectively.



Age Group 50-54 65-69 80-84 50-54 65-69 80-84

7.118 4.422 3.382 3.884 4.859 4.161
(1.858) (0.591) (0.585) (0.576) (0.582) (0.665)
5.867 3.992 2.230 3.557 3.449 3.092

(1.342) (0.480) (0.315) (0.471) (0.357) (0.407)
1.749 2.157 1.141 0.953 1.003 0.983

(0.467) (0.263) (0.176) (0.133) (0.112) (0.139)
1.577 1.744 1.856 2.503

(0.216) (0.242) (0.203) (0.393)

0.318 0.329 0.413 0.336 0.359 0.451
(0.069) (0.097) (0.080) (0.050) (0.027) (0.043)
0.654 0.779 0.770 0.341 0.307 0.271

(0.054) (0.039) (0.045) (0.022) (0.012) (0.014)
0.619 0.548 0.639 0.724

(0.051) (0.055) (0.054) (0.069)

1.54 1.474 0.922 1.345 0.396 0.307
(0.275) (0.230) (0.303) (0.219) (0.223) (0.270)
0.134 -0.138 -0.426 0.154 -0.63 -0.589

(0.249) (0.199) (0.285) (0.215) (0.200) (0.249)
2.176 2.332 2.279 1.903 1.557 2.421

(0.279) (0.230) (0.378) (0.303) (0.280) (0.385)
2.885 2.803 2.027 1.949 1.303 0.728

(0.449) (0.378) (0.496) (0.292) (0.238) (0.292)
0.644 1.040 0.549 0.502

(0.349) (0.505) (0.346) (0.583)

-0.029 0.161 0.085 0.033 0.115 0.13
(0.101) (0.034) (0.043) (0.034) (0.032) (0.037)
-0.010 0.129 0.054 0.050 0.099 0.092
(0.084) (0.031) (0.030) (0.032) (0.023) (0.027)

Obs. 6,859 10,590 4,779 11,291 11,930 7,560

Error Variances

na

Large Muscle Index

Self-rated Health Status 

Male Female

Log Walking Speed na

Peak Exp. Air Flow

The Table shows the estimates of the static measurement model for selected age groups and gender obtained using Mplus. 
Reported are analytic standard errors.

Factor Loadings

Parameters of Measurement Equations

Peak Exp. Air Flow

Log Grip Strength

Log Walking Speed

Large Muscle Index

na na

SHRS

na

Self-rated Health Status 

Regression Coefficients Height

Log Walking Speed

Log Grip Strength

Table 6: Static Measurement Equation for Selected Groups

Large Muscle Index

Peak Exp. Air Flow

Regression Coefficients Age

na



Table 7: Fit of Static Measurement Model for Females age 50-54
Panel A: Bivariate Frequency Table for Subjective Health Measures

4 3 2 1 0

Poor
3.17 / 2.92 1.56 / 1.54 0.84 / 0.97 0.56 / 0.52 0.45 / 0.39

Fair
3.30 / 3.13 3.12 / 3.11 2.92 / 2.94 2.61 / 2.61 2.92 / 3.26

Good
1.95 / 2.04 3.59 / 3.25 5.35 / 4.85 5.87 / 6.09 11.26 / 11.28

Very Good
0.81 / 0.68 1.93 / 2.09 3.98 / 4.18 6.79 / 6.73 17.61 / 17.63

Excellent
0.23 / 0.09 0.57 / 0.61 1.37 / 1.80 3.48 / 3.45 13.76 / 13.88

Panel B: Variance Covariances for Objective Health Measures

`

Reported are the observed / estimated covariances of the objective measures available for 
this age-education group. The number of observations in non-missing values on both log 
grip and expiratory airflow variables among females aged 50-54 is 842.

Each cell reports the percentage of individuals who fall into each combination of the SRHS and the LMI. 
The first number in each cell refers to the observed and the second the predicted frequencies. SRHS 
refers to the self-reported health status variable. The LMI is constructed from reported difficulties with the 
following activities: sitting for two hours, getting up from a chair, stooping or kneeling or crouching, pushing 
or pulling a large object.  The number of observations with non-missing values on both the SRHS and LMI 
among females aged 50-54 is 11,254.

0.43 / 0.44

0.13 / 0.10 0.42 / 0.44

Exp. Air Flow

   
 S

R
H

S
 

Large Muscle Index (LMI)

Log Grip 

Exp. Air Flow

Log Grip 



Table 8: The Distribution of Health for Selected Age Groups

50-54 65-69 80-84 50-54 65-69 80-84

0.755 3.650 3.897 1.376 1.764 1.712

(0.765) (0.552) (1.369) (0.567) (0.474) (0.828)

0.007 -0.040 -0.049 -0.028 -0.032 -0.032

(0.015) (0.008) (0.017) (0.011) (0.007) (0.010)

0.028 0.021 0.076 0.106 0.032 0.012

(0.014) (0.007) (0.038) (0.028) (0.007) (0.006)

1.318 3.042 2.096 0.705 0.873 2.230

(0.755) (0.896) (1.178) (0.419) (0.600) (0.856)

0.000 -0.037 -0.021 -0.011 -0.025 -0.043

(0.014) (0.012) (0.014) (0.008) (0.009) (0.011)

0.006 0.023 0.028 0.002 0.023 0.048

(0.003) (0.030) (0.011) (0.000) (0.019) (0.016)

-0.792 1.316 -0.159 0.663 1.292 -0.585
(0.343) (1.157) (0.623) (0.103) (0.686) (0.478)

0.31 0.79 0.46 0.66 0.78 0.36

1.256 0.882 0.150 -0.011 -0.472 -1.157

0.147 0.229 0.335 0.288 0.251 0.269

-1.121 -0.558 -0.568 -0.608 -0.337 -0.343

Observations 6,859 10,590 4,779 11,291 11,930 7,560
Reported are the estimated parameters pertaining to the health factor distribution from the static measurement model 
described in the text. Also reported are moments from the implied health factor distribution. Standard errors are in 
parentheses.

Skew

Logit Parameter and Implied Probability of Class 1

Intercept

Age

Male Female

Implied Means, Std Dev, and Skew in the Distribution of Health Factors

`

Variance

Age Group

C
la

ss
 2

Intercept and Age-regression Coefficient and Variance

Intercept

Logit Parameter

Class 1 Probability

Standard Deviation

Age

C
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ss
 1

Variance



Age μ ρ σ α0 α1 E[ha+1]‐E[ha]

50-54 -0.032 0.995 0.017
[-0.05,-0.02] [0.89,1.03] [0.015,0.022]

55-59 -0.027 0.970 0.012
[-0.05,-0.01] [0.89,1.03] [0.004,0.018]

60-64 -0.032 1.022 0.013
[-0.05,-0.02] [0.90,1.05] [0.012,0.021]

65-69 -0.030 1.020 0.013
[-0.07,-0.02] [0.94,1.03] [0.013,0.019]

70-74 -0.079 0.965 0.020
[-0.11,-0.02] [0.94,1.04] [0.009,0.022]

75-79 -0.024 1.036 0.007
[-0.12,-0.01] [0.94,1.05] [0.006,0.019]

80-84 -0.024 1.028 0.010
[-0.11,-0.01] [0.96,1.04] [0.010,0.017]

85-100 -0.116 0.954 0.028
[-0.12,-0.09] [0.95,0.97] [0.028,0.030]

Age μ ρ σ α0 α1 E[ha+1]‐E[ha]

50-54 -0.108 1.077 0.016
[-0.19,0.09] [0.87,1.09] [0.001,0.019]

55-59 -0.103 1.069 0.012
[-0.17,0.02] [1.00,1.12] [0.001,0.014]

60-64 0.011 0.955 0.014
[-0.09,0.09] [0.89,1.04] [0.011,0.018]

65-69 -0.057 1.025 0.014
[-0.09,0.03] [0.93,1.04] [0.010,0.018]

70-74 -0.063 1.011 0.017
[-0.10,-0.02] [0.94,1.08] [0.015,0.020]

75-79 -0.033 0.936 0.019
[-0.07,-0.00] [0.86,1.02] [0.017,0.023]

80-84 -0.017 0.880 0.019
[-0.05,0.02] [0.66,0.98] [0.018,0.030]

85-100 -0.107 0.799 0.023
[-0.15,-0.05] [0.43,0.95] [0.015,0.037]

Table 9: Estimates of a Simple Aging Process: ha+1=μ+ρha+ε ‐ No Mortality Correction

Females

`

Reported are parameter estimates of the dynamic model obtained using the simulation approach 
described in the paper.  Below the parameter estimates are the 95% confidence intervals obtained by 
bootstrapping with 100 replications. The change in mean health in the last column is obtained using the 
parameter estimates presented in the same row. 

No Mortality Model     
Estimated

No Mortality Model     
Estimated

-0.032

-0.053

-0.056

-0.055

-0.058

-0.039

-0.038

-0.023

-0.012

-0.021

-0.035

-0.036

-0.055

-0.062

-0.037

-0.091



Age μ ρ σ α0 α1 E[ha+1]‐E[ha] Mortality

50-54 -0.031 0.994 0.017 8.167 1.682
[-0.05,-0.02] [0.89,1.04] [0.015,0.022] [5.1,10.7] [1.56,2.71]

55-59 -0.027 0.970 0.012 10.411 2.569
[-0.05,-0.01] [0.89,1.04] [0.004,0.018] [2.9,10.7] [0.80,2.51]

60-64 -0.032 1.021 0.013 7.884 1.676
[-0.06,-0.02] [0.90,1.05] [0.012,0.019] [3.0,10.6] [1.33,2.70]

65-69 -0.030 1.019 0.013 9.924 1.879
[-0.07,-0.02] [0.94,1.03] [0.013,0.019] [2.7,10.6] [0.59,2.55]

70-74 -0.080 0.964 0.023 7.162 1.703
[-0.11,-0.02] [0.92,1.04] [0.011,0.023] [3.0,10.2] [1.25,2.61]

75-79 -0.023 1.037 0.006 7.626 2.152
[-0.11,-0.01] [0.95,1.05] [0.006,0.019] [3.3,10.0] [1.27,2.80]

80-84 -0.024 1.031 0.010 3.751 1.597
[-0.11,-0.01] [0.96,1.04] [0.010,0.018] [2.5,6.8] [0.60,2.26]

85-100 -0.120 0.956 0.028 2.935 1.051
[-0.19,-0.09] [0.91,0.97] [0.022,0.030] [2.1,3.6] [0.53,1.44]

` μ ρ σ α0 α1 E[ha+1]‐E[ha] Mortality

50-54 -0.108 1.077 0.016 8.666 2.425
[-0.24,0.11] [0.87,1.14] [0.003,0.020] [0.7,8.7] [0.37,3.46]

55-59 -0.102 1.069 0.012 0.458 1.801
[-0.16,-0.02] [1.00,1.12] [0.001,0.014] [-0.2,1.8] [0.81,2.62]

60-64 0.006 0.957 0.015 1.228 1.106
[-0.09,0.08] [0.89,1.04] [0.011,0.018] [0.7,1.9] [0.61,1.72]

65-69 -0.058 1.025 0.014 0.648 1.936
[-0.10,0.03] [0.93,1.08] [0.008,0.017] [0.2,1.2] [1.32,2.70]

70-74 -0.065 1.011 0.018 1.087 1.417
[-0.11,-0.010 [0.93,1.08] [0.015,0.020] [0.7,1.3] [0.95,1.95]

75-79 -0.048 0.963 0.019 1.048 1.693
[-0.08,-0.01] [0.87,1.04] [0.015,0.024] [0.9,1.3] [1.26,1.99]

80-84 -0.024 0.894 0.020 1.263 1.648
[-0.07,0.01] [0.74,1.02] [0.015,0.026] [1.2,1.5] [1.27,2.25]

85-100 -0.097 0.799 0.023 1.385 1.702
[-0.13,-0.05] [0.52,0.97] [0.005,0.033] [1.2,2.2] [1.48,3.61]

Females

Males

Presented are parameter estimates of the dynamic model obtained using the simulation approach described in the 
paper. Below the parameters are 95% confidence intervals obtained by bootstrapping with 100 replications. The change 
in mean health in the last column is obtained using the parameter estimates presented in the same row. This is the 
change in health in the population including descedents (i.e. without removing descedents from the population on which 
the decline in health is calculated).

Table 10: Estimates of a Mortality Corrected  Aging Process: ha+1=μ+ρha+ε 

-0.012

-0.021
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-0.037

-0.057

-0.065

-0.042
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0.000

0.005
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0.011
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0.069-0.060
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-0.055 0.000

-0.031
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-0.039
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0.000

0.000

0.000
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Expiratory Air 
Flow Log Grip Strength SRHS LMI
0.41 0.38 0.71 0.71

[0.34,0.44] [0.24,0.41] [0.70,0.76] [0.70,0.73]

Age μ ρ σ α0 α1 E[ha+1]‐E[ha] Mortality

50-54 -0.029 0.929 0.062 8.2 1.7
[-0.04,-0.02] [0.85,1.00] [0.060,0.064] [3.3,10.8] [1.5,2.8]

55-59 -0.030 0.949 0.028 10.4 2.6
[-0.05,-0.01] [0.86,1.01] [0.022,0.030] [2.9,10.7] [0.9,2.6]

60-64 -0.034 0.999 0.038 8.1 1.7
[-0.06,-0.03] [0.92,1.02] [0.037,0.043] [3.1,10.6] [1.5,2.7]

65-69 -0.041 0.984 0.021 9.9 1.9
[-0.08,-0.03] [0.90,1.00] [0.021,0.028] [2.7,10.7] [0.6,2.6]

70-74 -0.093 0.938 0.013 7.2 1.7
[-0.13,-0.05] [0.89,0.99] [0.003,0.020] [2.9,10.3] [1.2,2.7]

75-79 -0.046 1.003 0.007 7.7 2.2
[-0.14,-0.02] [0.90,1.02] [0.011,0.026] [3.2,10.1] [1.4,2.8]

80-84 -0.099 0.964 0.090 3.8 1.6
` [-0.20,-0.08] [0.88,0.97] [0.090,0.093] [3.2,6.7] [1.2,2.3]
85-100 -0.205 0.893 0.147 2.9 1.1

[-0.40,-0.19] [0.75,0.91] [0.146,0.148] [2.2,3.7] [0.6,1.5]

Expiratory Air 
Flow Log Grip Strength SRHS LMI
0.61 0.33 0.76 0.78

[0.55,0.83] [0.26,0.40] [0.75,0.80] [0.74,0.79]

Age μ ρ σ α0 α1 E[ha+1]‐E[ha] Mortality

50-54 -0.069 1.047 0.027 8.8 2.4
[-0.10,0.28] [0.76,1.08] [0.014,0.032] [0.3,8.8] [0.4,3.6]

55-59 -0.082 1.054 0.021 0.5 1.8
[-0.15,0.04] [0.95,1.11] [0.016,0.025] [-0.2,1.7] [0.8,2.7]

60-64 -0.023 0.944 0.023 1.2 1.1
[-0.06,0.11] [0.86,1.02] [0.015,0.029] [0.6,1.7] [0.6,1.7]

65-69 -0.032 0.996 0.032 0.6 2.0
[-0.07,0.07] [0.88,1.04] [0.030,0.038] [0.2,1.1] [1.3,2.7]

70-74 -0.015 0.946 0.012 1.1 1.4
[-0.06,0.03] [0.87,1.01] [0.011,0.025] [0.7,1.3] [1.0,1.9]

75-79 0.000 0.862 0.099 1.0 1.8
[-0.04,0.04] [0.76,0.98] [0.098,1.01] [0.9,1.3] [1.3,2.1]

80-84 -0.006 0.825 0.162 1.3 1.8
[-0.04,0.03] [0.67,0.90] [0.161,0.163] [1.2,1.5] [1.3,2.3]

85-100 -0.101 0.781 0.251 1.4 1.9
[-0.13,-0.06] [0.50,0.88] [0.250,0.252] [1.3,2.0] [1.6,3.3]

Presented are parameter estimates of the dynamic model obtained using the simulation approach described in the paper. Below the 
parameters are 95% confidence intervals obtained by bootstrapping with 100 replications. The change in mean health in the last column is 
obtained using the parameter estimates presented in the same row. 

Table 11: The Random Effects Model
Females

Males

Autoregressive Parameters

Standard Deviations of Random Effects

Standard Deviations of Random Effects

Autoregressive Parameters
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-0.036
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-0.036
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0.051
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0.018
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0.008
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0.000
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-0.058
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0.072
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0.000

0.000

0.000

0.000

0.000



Table 12: Observed and Predicted Autocorrelation Matrices for Females aged 65‐69

 Air Flow Grip Str. SRHS LMI
Air Flow 0.75 0.20 0.18 0.10
Grip Str. 0.13 0.41 0.17 0.11
SRHS 0.23 0.20 0.69 0.43
LMI 0.11 0.19 0.43 0.65

Basic Specification

 Air Flow Grip Str. SRHS LMI
Air Flow 0.17 0.16 0.30 0.23
Grip Str. 0.15 0.16 0.27 0.22
SRHS 0.30 0.26 0.54 0.44
LMI 0.24 0.22 0.45 0.38

Mortality Corrected Model

 Air Flow Grip Str. SRHS LMI
Air Flow 0.17 0.16 0.30 0.23
Grip Str. 0.15 0.16 0.26 0.21
SRHS 0.30 0.26 0.54 0.44
LMI 0.24 0.22 0.45 0.37

Measurement Specific Random Effect Model

 Air Flow Grip Str. SRHS LMI
Air Flow 0.61 0.15 0.29 0.23
Grip Str. 0.15 0.67 0.27 0.21
SRHS 0.29 0.26 0.58 0.43
LMI 0.23 0.21 0.44 0.53

Period t

Observed Empirical Moments

Predicted Moments

Period t+2

Period t+2

Period t+2

Correlations of health measures across HRS-interviews for females aged 65-69. The top 
panel displays the empirically observed moments, whereas the bottom three panels show 
the correlations implied by the estimated dynamic models.

Period t+2

Period t

Period t

Period t



50-54 65-69 80-84 50-54 65-69 80-84

1.26 0.88 0.15 -0.01 -0.47 -1.16
0.15 0.23 0.34 0.29 0.25 0.27
-1.12 -0.56 -0.57 -0.61 -0.34 -0.34

0.95 1.79 7.60 0.83 1.47 4.39
0.13 0.69 3.81 0.18 0.35 1.19
1.50 1.30 1.30 1.25 0.82 0.78

1.00 1.00 1.00 1.00 1.00 1.00
0.14 0.36 0.25 0.22 0.24 0.27
1.50 1.30 1.30 1.25 0.82 0.78

Standard Deviation
Skew

Predicted Mortality (percent)
Mean

Standard Deviation
Skew

Relative Mortality Risk (to Mean)
Mean

Standard Deviation
Skew

Male Female

Log Grip Strength 

Table 13: The Distribution of Health under Different Normalizations

Age Group

Mean

Implied Means, Std Dev, and Skew in the Distribution of Health Factors
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Also shown are normal densities with same mean and variance.

In Units of Predicted Mortality
Figure 3: Estimated Health Densities
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